Can EMMA solve the puzzle of the knee?

T. Kalliokoski for EMMA collaboration University of Jyväskylä

Knee

K. Nakamura *et al.* (Particle Data Group), J. Phys. G **37**, 075021 (2010)

Knee explanations?

- 4 classes of explanations (see for example J.R. Hörandel, Astroparticle physics 21 (2004) 241)
- Changes in acceleration processes around the knee energy (more numerous lower energy processes run out of steam)
 - Models with variations of diffusive shock acceleration
 - Different A/Z dependencies between models
 - Galactic wind re-acceleration model
 - Z dependence
 - Cannonball model (A. De Rújula, Nucl. Phys. B (Proc. Suppl.) 151 (2006) 23)

Knee explanations 2?

- Leakage of cosmic rays from the Galaxy with non-changing spectral slope from the acceleration
 - Models with leakage through diffusion and/or drift
 - Different Z and A dependencies between models
- Losses via interactions with background particles in the Galaxy
 - For example pair-production, pion-photoproduction on nucleons and photo-disintegration of nuclei
 - Some of these effects have A dependence.

Knee explanations 3?

NEW PHYSICS

Experiments at and above knee are not measuring cosmic ray particles directly. They measure the shower of particles created by cosmic ray particle hitting atom in atmosphere. The analyses are based on simulations beyond measured cross-sections.

Extensive Air Showers

1 PeV

Proton | Iron

e⁺, e⁻ and photons

muons

hadrons

F. Schmidt, "CORSIKA shower images", http://www.ast.leeds..ac.uk/~ fs/showerimages.html

EMMA = Experiment with MultiMuon Array

September 22, 2010

EMMA Location

September 22, 2010

Muons reaching EMMA

Simulated muon distributions

(CORSIKA+QGSJET 01 with 50 GeV cut-off)

Energy

1

muon density at the core

Model comparison for EMMA

EMMA - Layout at 75 m

Shower reconstruction 1

EMMA Detectors effective area

Simulated change of p / Fe ratio from 80/20 to 20/80 reconstructed by EMMA after 12 months running

EMMA Detectors

Drift chambers from Delphi (MUB)

 Single detector element (plank) consists out of 7 chambers, each 20*365cm²

Position resolution ~ 1cm²

EMMA Detectors 2

Plastic scintillators

- 50 [′] 50 cm², height » 13 cm, m » 20 kg,
- arranged to 16 individual pixels, 12 12 cm², 3 cm thick each,
- employ APDs (avalanche photodiodes),
- time resolution ~ 1 ns.
- to be used for trigger and improving tracks

