

The Nearby Supernova Factory

Matthias Kerschhagg

Physikalisches Institut Universitaet Bonn

For the Nearby Supernova Factory

Experimental Astroparticle Physics and Cosmology

Physikalisches Institut Nussallee 12, 53115 Bonn AG Prof. Marek Kowalski

- Cosmology with SN Ia
- The Nearby Supernova Factory
- Spectro-photometry
- SNF Results

Cosmology with SN Ia

- The Nearby Supernova Factory
- Spectro-photometry
- SNF Results

Supernova Classification

- Core collapse vs thermonuclear
- Spectroscopic classification
- Great diversity in core collapse
 SNe (mass)
- SN Ia spectroscopic

homogeneity

- Single Degenerate (SD) model:
- * White dwarf accreting matter from companion
 - * reaches Chandrasekhar mass (1.4 M_{sun})
- → thermonuclear explosion

SN la as Standard Candles

SN 1006.

Credit: NASA/CXC/Rutgers/J.Hughes et al.

Established standard candles:

- Bright Mb ~ -19.5
- Standardizable empirically
 broader brighter (stretch)
 bluer brighter (color)

SN la as Standard Candles

SN 1006.

Credit: NASA/CXC/Rutgers/J.Hughes et al.

Established standard candles:

- Bright Mb ~ -19.5
- Standardizable empirically
 broader brighter (stretch)
 bluer brighter (color)

Courtesy R. Pereira

Precision Cosmology with SN la

Many sources of cosmological information, e.g.

- Baryon Acoustic Oscillations BAO
- Cosmic Microwave Background CMB
- SN Ia standard candles

BAO+CMB+SN Ia $\rightarrow \Omega_{M} = 0.279 + 0.017 - 0.016$, $\omega = -0.997 + 0.077 - 0.082$

(Amanullah et al. 2010)

- Cosmology with SN Ia
- The Nearby Supernova Factory
- Spectro-photometry
- SNF Results

The Nearby SNfactory

SNF Science Objectives

- Make SN Ia standard candles even better
- Determine zero point of HD with unprecedented accuracy
- Investigate SN Ia physics such as progenitors, environments, explosion models, dust etc.

Supernova Integral Field Spectrograph (SNIFS)

- Cosmology with SN Ia
- The Nearby Supernova Factory
- Spectro-photometry
- SNF Results

Spectro-photometry

Time

Spectral time series:

- ~15 observations per target
- First spectrum typically at $\tau = -4$ d

- Spectral and Flux features:
 Full 4D (t,x,y,λ) spectral
 information
 Integration over any filter
- bandpass → Lightcurve

Spectro-photometry

Time

Spectral and Flux features:
Full 4D (t,x,y,λ) spectral information
Integration over any filter

bandpass → Lightcurve

- Cosmology with SN Ia
- The Nearby Supernova Factory
- Spectro-photometry
- SNF Results

The SNF Dataset

The SNF Dataset

Making the best standard candles even better

Classical Correction

Classic Corrections

- Color:
- bluer → brighter
- Shape:
- broader \rightarrow brighter
- Result:
 - $0.4 \text{ mag} \rightarrow 0.16 \text{ mag}$

Bailey et al. A&A 500, L17-L20 (2009)

Classical Correction

- Color:
- bluer → brighter
- Shape:
- broader \rightarrow brighter
- Result:
 - $0.4 \text{ mag} \rightarrow 0.16 \text{ mag}$

Bailey et al. A&A 500, L17-L20 (2009)

Using Spectral Metrics

Flux Ratio Correlation • $R_{x/y} = F_{x}/F_{y}$ Identify ratio with max correlation to HD residuals Search in training sample \rightarrow check with validation sample Result: $0.16 \text{ mag} \rightarrow 0.13$ mag

Flux Ratio Correlation $\mathsf{R}_{\mathsf{x}/\mathsf{v}} = \mathsf{F}_{\mathsf{x}}/\mathsf{F}_{\mathsf{v}}$ Identify ratio with max correlation to HD residuals Search in training sample \rightarrow check with validation sample Result: $0.16 \text{ mag} \rightarrow 0.13$ mag

Flux Ratio Correlation • $R_{x/v} = F_{x}/F_{v}$ Identify ratio with max correlation to HD residuals Search in training sample \rightarrow check with validation sample Result: $0.16 \text{ mag} \rightarrow 0.13$ mag

Bailey et al. A&A 500, L17-L20 (2009)

Flux Ratio Correlation • $R_{x/v} = F_{x}/F_{v}$ Identify ratio with max correlation to HD residuals Search in training sample → check with validation sample Result: $0.16 \text{ mag} \rightarrow 0.13$ mag

Bailey et al. A&A 500, L17-L20 (2009)

Hubble Diagram

Super Chandrasekhar SN SN2007if:

- Single degenerate (SD)
- \rightarrow SD M=M_{Ch}

• double degenerate (DD) model

 $\rightarrow \text{DD M} > \text{M}_{Ch}$

SN la physics Super Chandrasekhar SN2007if

Exploit spectral information for progenitor mass models

SN2007if: M = 2.4 +- 0.2 M_{Sun}

R. A. Scalzo et al. 2010, ApJ

Chandra Multimedia

Conclusions

- ~190 nearby spectro-photometric SN Ia:
 - * Invaluable spectral dataset
 - * Improved statistical power and systematics control
 - * Allowing for unprecedented accuracy for HD zero point
- New and robuster standardization methods:
 - * Flux correlation ratios
- New insights into SN Ia physics:
 - * e.g. Super Chandrasekhar SN 2007if
- Preparations for SNF phase II