Internal conversion electrons and SN light curves

International School of Nuclear Physics 32nd Course: Particle and Nuclear Astrophysics September 23, 2010, Erice

Ivo Rolf Seitenzahl

DFG Emmy Noether Research Group Max-Planck-Institut für Astrophysik, Garching

Max Planck Institute for Astrophysics

Collaborators at MPA

Supernova Light Curve Considerations

- Energy liberated during the explosion (either gravitational or thermonuclear) is converted to kinetic energy
- Ejecta re-heats as γ-rays from radioactive nuclei synthesized in the explosion thermalize via Compton scattering and photoelectric absorption and deposit energy
- Column density and hence opacity to γ -rays decreases as t⁻²
- SN Ia become increasingly transparent to γ-rays after ~200 days, CC supernovae much later due to large envelope mass
- X-rays produced in the inner regions are still mostly absorbed several years after the explosion
- After maximum light, most electrons have recombined and ionization states higher than Fe III are rare

Bolometric light curves

- ⁵⁶Ni --> ⁵⁶Co --> ⁵⁶Fe releases gamma-rays. This powers initial light curve until gamma-rays escape and other heating channels take over
- At late times, when most gamma-rays escape and positrons dominate the energy input, the bolometric light curve should fall with the ⁵⁶Co half life.
- Local and complete deposition of positron kinetic energy is usually assumed
 - Escape fraction of positrons at late times remains an open question
- Usually, bolometric light curves are reconstructed from UVOIR (UV Optical InfraRed)
- ► IR bands are progressively more important at late times as the wavelength of the peak emission shifts into further and further into the red → infrared catastrophe
- Unfortunately, only very few IR observations exist, especially at late times
- Detailed models must treat radiative transfer of photons
 - Abundances and density/velocity profile needed for source terms, opacities, and time evolution

Bolometric light curve for SN 2003hv

Hypernova 1998bw (SN Ic)

J. Sollerman et al.: SN 1998bw, the final phases

Fig. 5. Using a very simple model for the radioactive powering of SN 1998bw, a reasonable fit to the data can be achieved. The model is described in the text. The powering of 56 Co, 57 Co, and 44 Ti contributes at progressively later phases. The early observations marked by crosses are from P01 and shifted to a distance of 35 Mpc.

Erice XXXII, September 23 2010

Relevant Nuclear Decay Modes

Positron emission:

- Proton in the nucleus decays into a neutron, positron, and electron neutrino. The positron and neutrino are ejected.
- Nuclei that have an open positron channel always also have an admixture of electron capture

Orbital (usually K/L-shell) electron capture by a proton in the nucleus:

- Daughter has a hole in the inner atomic electron structure
 - Hole is generally filled by higher lying electrons transitioning to lower lying levels emitting X-rays in the cascade
 - Energy difference and quantum numbers can also be transferred to an outer electron, which is ejected : Auger electrons

In both cases the transition can be either to an excited state or the ground state:

- ► If the transition is to an excited state, generally a cascade of gamma-rays is emitted
- Energy difference of nuclear states and quantum numbers can also be transferred to an (inner) atomic electron, which is ejected : Internal conversion electrons

Relevant nuclear decay chains

⁵⁶Ni
$$\xrightarrow{t_{1/2}=6.08d}$$
 ⁵⁶Co $\xrightarrow{t_{1/2}=77.2d}$ ⁵⁶Fe
⁵⁷Ni $\xrightarrow{t_{1/2}=35.60h}$ ⁵⁷Co $\xrightarrow{t_{1/2}=271.79d}$ ⁵⁷Fe
⁵⁵Co $\xrightarrow{t_{1/2}=17.53h}$ ⁵⁵Fe $\xrightarrow{t_{1/2}=999.67d}$ ⁵⁵Mn
⁴⁴Ti $\xrightarrow{t_{1/2}=58.9y}$ ⁴⁴Sc $\xrightarrow{t_{1/2}=3.97h}$ ⁴⁴Ca

- ▶ 56 Ni is produced most abundantly by far → most important decay chain
- ▶ ⁵⁷Ni has lower average gamma-ray energy \rightarrow higher opacity
- ► ⁵⁵Co decay chain generally ignored since it's 100% electron capture to the ground-state
- ▶ ⁴⁴Ti decay chain important due to its long half life and the energetic ⁴⁴Sc positron
- For late supernova light curves, other decay chains are generally thought to be insignificant (cf. last two slides)
- Energy deposition considered is $\varepsilon(t) = N(t) \lambda Q(t)$
- N(t) solution to Bateman equations, $\lambda = \ln(2)/t_{1/2}$ and Q(t) is energy deposited per decay

Internal conversion for ⁵⁷Co

- Internal conversion electrons are significant due to a fortuitously low lying 3/2- state in the daughter ⁵⁷Fe
- Combined with Auger electrons about 18 keV/Bq/s of kinetic energy, which can compete with the positron of ⁵⁶Co decay due to the longer half life of ⁵⁷Co

Nucleus	Auger e ⁻	IC <i>e</i> ⁻	e^+	X-ray
⁵⁷ Co	7.594	10.22	0.000	3.598
⁵⁶ Co	3.355	0.374	115.7	1.588
⁵⁵ Fe	3.973	0.000	0.000	1.635
⁴⁴ Ti	3.519	7.064	0.000	0.768
⁴⁴ Sc	0.163	0.074	595.8	0.030

Table 1.	Radioactive decay	energies	(keV	decay-1).
----------	-------------------	----------	------	---------	----

Leptonic and X-ray heating for SNe Ia

- Consider radioactive energy generation due to positrons and electrons for W7 model yields (thick lines; thin lines also include X-rays)
- ► Slow down of light curve expected due to ⁵⁷Co after ~800 days
- Further slow down of light curve expected due to 55 Fe after ~1500 days

Hypernova 1998bw

- Observed slow down of light curve at 940 days naturally explained by nucleosynthesis predictions of Nakamura et al. 2001
- ► No unrealistic extremely super solar enhancements of ⁵⁷Ni required
- Detailed modeling of light curve can give production ratio ⁵⁷Ni/⁵⁶Ni

Summary slide

- Internal conversion & Auger electrons produced in the decay of ⁵⁷Co can be dominant heat source for some phases of stripped CC and thermonuclear SNe
- Auger electrons produced in the ground-state to ground-state electron capture decay of ⁵⁵Fe predicted to cause a further slow down of the light curves of SNe Ia after ~1500 days (no observations exist that late)
- Indication that signature of ⁵⁷Co e⁻ has already been observed in 1998bw and 2003hv
- Nearby supernova in the Local Group required for reliable determinations of ⁵⁷Ni, ⁴⁴Ti (and possibly even ⁵⁵Fe) masses.