OLYMPUS Experiment at DORIS

R. Beck for the OLYMPUS- collaboration

From Quarks and Gluons to Hadrons and Nuclei Erice-Sicily, September 16-24, 2011

Outline of the talk

Two photon contributions in elastic electron nucleon scattering

- Introduction
- OLYMPUS experiment at DORIS
 e⁺ p / e⁻ p elastic cross section ratio
- Recent Results
- Summary

OLYMPUS

pOsitron-proton and eLectron-proton elastic scattering to test the hYpothesis of Multi-Photon exchange Using DoriS

2007 – Letter of Intent
2008 – Full proposal
2009/10 – Funding and Approval
2010/11 – Transfer of BLAST detector Installation and commissioning
2012 – OLYMPUS Running

Special Thanks to the Post-docs of OLYMPUS:

J. Bernauer, J. Diefenbach, C. Funke, P. Hoffmeister, R.F. Perez-Benito, A. Winnebeck,

Unpolarized Elastic e-N Scattering

Polarized Elastic e-N Scattering

- Double polarization transfer measurements in elastic ep-scattering
 - Polarized beam and recoil polarization or polarized proton target

¹H(ē,e'p), ¹H(ē,e'p)

• Polarized cross section

$$\sigma = \sigma_0 \left(1 + P_e \, ec{P_p} \!\cdot\! ec{A}
ight)$$

$$-\sigma_0 \vec{P_p} \cdot \vec{A} = \sqrt{2\tau\epsilon(1-\epsilon)} G_E G_M \sin\theta^* \cos\phi^* + \tau \sqrt{1-\epsilon^2} G_M^2 \cos\theta^*$$

Asymmetry ratio

independent of polarization and analysis power

$$\frac{P_{\perp}}{P_{\parallel}} = \frac{A_{\perp}}{A_{\parallel}} \propto \frac{G_E}{G_M}$$

single photon exchange – Born approximation

Rosenbluth and Recoil Polarization

- Dramatic discrepancy between Rosenbluth and recoil polarization data
- All Rosenbluth data from SLAC and JLab in agreement
- Speculation: two photon exchange (TPE) could explain discrepancy

Rosenbluth and Recoil Polarization

- <u>Speculation</u>: There are radiative corrections to Rosenbluth experiments that are not included
- At high Q² electric form factor G_E is small,
- Missing radiative corrections will affect G_E extraction

effect more visible at large Q2

Radiative Corrections

 Since the Rosenbluth separation involves a small term, G_E, need to consider the corrections, specifically radiative corrections

- Mostly well done in the past:
 - Meister and Yennie (1963)
 - Mo and Tsai (1961 and 1969)
 - Maximon and Tjon (2000)
- But clear incompleteness in two photon exchange diagrams

Radiative Corrections

Two-Photon Contributions

• Most sensitive variable for two-photon effects: Cross section ratio e⁺p / e⁻p

Two-Photon Contributions

- Most sensitive variable for two-photon effects
 - Cross section ratio e⁺/e⁻
 - exactly unity in1-photon exchange (Born approximation)
 - several percent effect at Q² ~ 2 GeV²

Experimental Requirements

- Requirements: for cross section ratio e⁺/e⁻
 - electron and positron beams
 - E ~ 2 GeV
 - frequent switch
 - pure proton target
 - lepton-proton coincidence measurement
 - large theta coverage (epsilon range)
 - minimise systematic uncertainties
 - symmetric arrangement
 - precise relative luminosity

OLYMPUS at **DESY**

DORIS

e⁺ and e⁻ beams
E = 2.0 (4.5)GeV
Q² = 0.6-2.4(4.1) (GeV/c)²
OLPMPUS experiment fits
in former ARGUS location

Injection

Rf Strai

Parts of existing BLAST detector from MIT- Bates

- Change between electrons and positrons once a day
- Change toroidal coils polarity once a day
- Left-right symmetry

DESY, MIT

Target and Vacuum System

Target and Vacuum System

Target installed at DORIS beamline

DESY, MIT

DORIS Test-Experiment

Wire Chambers

- All chambers completely reconditioned
- rewired, new windows
- Test and calibration of cells in progress

DESY, MIT

TOF Detectors

- Situated behind wire chambers
- Provide trigger an relative timing
 - calibration in progress
- A new flasher system

Glasgow, Yerewan

Experimental Requirements

- Requirements
 - electron and positron beams
 - E ~ 2 GeV
 - frequent switch
 - pure proton target
 - lepton-proton coincidence measurement
 - large theta coverage (epsilon range)
 - minimise systematic uncertainties
 - symmetric arrangement
 - precise relative luminosity

Experimental Requirements

- Redundant monitoring of Luminosity
 - 2 symmetric luminosity monitors
 - 12deg telescopes: GEMs + MWPCs (coincident)
 - 2deg Moller/Bhabha calorimeters
- Regular change of both
 - particle type: $i = e^+$ or e^-
 - magnet polarity: j= pos or neg
- Combination
 - efficiency and acceptance effects cancel to first order

$$N_{ij} = L_{ij} \sigma_i \kappa^p_{ij} \kappa^l_{ij}$$
lumi Γ proton, lepton efficiency

$$\frac{\sigma_{e^+}}{\sigma_{e^-}} = \left[\left(\frac{N_{e^++} N_{e^+-}}{N_{e^-+} N_{e^--}} \left/ \frac{A_{e^++} A_{e^+-}}{A_{e^-+} A_{e^--}} \right) \right. \left. \left(\frac{N_{e^++}^{\text{fwd}} N_{e^+-}^{\text{fwd}}}{N_{e^-+}^{\text{fwd}} N_{e^--}^{\text{fwd}}} \right. \left. \left(\frac{A_{e^++}^{\text{fwd}} A_{e^+-}^{\text{fwd}}}{A_{e^-+} A_{e^--}} \right) \right]^{\frac{1}{2}} \right]$$

12 deg Luminosity Monitor

- Redundant monitoring of Luminosity
 - 3 GEMs + 3 MWPCs
 - Already installed and tested

Hampton, PNPI, Rome

Moller/Bhabha Luminosity Monitor

- Existing radiation hard PbF₂ crystals from A4-Mainz
- Installed and will be tested in October beam time

Expected Results

Open symbols data from 1960's

Many theoretical predictions with little constraint

OLYMPUS: $E = 2 \text{ GeV}, \ \epsilon = 0.37-0.9$ $Q^2 = 0.6-2.2 \ (\text{GeV/c})^2$ <1% projected uncertainties 500h @ 2x10³³ / cm²s e+,e-

data run in 2012

DORIS Requirements

- Experiment requires frequently switching from e⁺ beam to e⁻ beam.
- Measure ratio R of positron-proton to electron-proton unpolarized elastic scattering to 1% stat.+sys.
- Control of systematic uncertainties essential.
- DORIS Parameter (1% effect on R)

- beam offset	< 1mm
- beam direction	< 0.03 deg
- beam energy	< 0.5 %

-> factor 10 better would be ideal only 0.1% systematic effect !

Status on Two Photon Exchange

Recoil polarization measurement

Jlab – Hall C: $Q^2 = 2.5 (GeV/c)^2$

$$R \propto rac{P_t}{P_l} \propto \mu_p rac{G_E}{G_M}$$
 (1 + cor. of 2 γ)

G_E/G_M from P_t/P_I constant vs. ε **→** no effect in P_t/P_I

 \rightarrow some effect in P₁

Expect larger effect in e+p/e-p ratio!

Status on Two Photon Exchange

J. Guttmann, N. Kivel, M. Meziane, and M. Vanderhaeghen, hep-ph/1012.0564

VEPP-3 Experiment, Novosibirsk

e+/e- ratio:

VEPP3/Novosibirsk

storage ring / intern. target – 2009 low Q2 range no momentum measurement

VEPP-3 Experiment, Novosibirsk

Projected Results compared to data from 1960's

preliminary result presented at Radiation Workshop August 2011, MIT A. Gramolin, INP, Novosibirsk

CLAS-Experiment, Jlab

CLAS/PR04-116 secondary e+/e- beam/ext. target

- Primary electron beam: 5.5 GeV and 100 nA
- Radiator: 1% of primary electrons radiate high energy photons
- Tagger magnet: Transport electrons tagger dump
- Converter: 10% of photons are converted to electron/positron pairs
- Chicane: separate the lepton beams
- Remaining photons are stopped at the photon blocker
- e^+ and e^- beams are then recombined and continue to the target
- Target: liquid hydrogen: length = 18 cm (30 cm) & diameter = 6 cm (6 cm)
- Detector: CLAS (DC, TOF)

e+/e- ratio:

CLAS-Experiment, Jlab

e+/e- ratio:

CLAS/PR04-116 secondary e+/e- beam/ext. target – 2010/11 (completed in Feb. 2011)

Status presented at Radiation Workshop August 2011, MIT R.P. Bennett, ODU

unknown beam energy

large background

Summary

- Clear evidence for two photon contribution
 - Rosenbluth data against polarization transfer data
 - SSA Asymmety
- No apparent evidence from polarization versus ε
 - no evidence in transversal polarization component vs. ϵ
 - small effect in longitudional component at large $\boldsymbol{\epsilon}$
- Experimental verification underway in e⁺ p versus e⁻ p comparison
 - CLAS at Jlab
 - VEPP-3 at Novosibirsk
 - OLYMPUS at DESY