Problems with proton radii # **Ingo Sick** Interest: rms-radii = fundamental quantities to describe size needed for interpretation of atomic hydrogen hyper-precise transition energies, 13 digits $\delta R_{rms} = \text{biggest uncertainty}$ $R_{rms} = \text{quantity from (e,e) of most interest to physicists from outside (e,e)}$ History of charge R_{rms} from (e,e): very checkered ### Reasons for scatter $G_e(q)$ and $G_m(q)$ obtained from L/T-separation $$rac{d\sigma}{d\Omega} = \sigma_{Mott} f_{recoil} igl[(G_e^2 + au G_m^2)/(1+ au) + 2 au G_m^2 t g^2(heta/2) igr]$$ $au=q^2/4m^2,\,m=$ proton mass, $q\sim 2Esin(\theta/2)=$ momentum transfer - fit of G's from individual experiments with chosen parameterization - no Coulomb corrections - problems with convergence radius of parameterization used ### Solution - ullet use world cross sections optimal L/T-separation during fit - use Coulomb corrections - use Pade approximants to parameterize ### Result I.S. Phys.Lett. B576 (03) 62 $$R_{rms}^{ch} = 0.895 \pm 0.018 fm$$ $R_{rms}^{m} = 0.855 \pm 0.035 fm$ ### Very conservative error bars statistical errors from error matrix systematic errors of data included change σ by syst.error, refit, add changes quadratically # sensitivity to R_{rms} : $0.5 \div 1.2 \text{fm}^{-1}$ Identify and understand deviations of previous determinations Zemach moments also determined to $\pm 1\%$ needed for atomic HFS (second Zemach moment) needed for muonic Hydrogen (third Zemach moment) # New: Precise data on atomic Hydrogen - energies in electronic H measured to 13 digits - Lamb shift in muonic H measured, see spectrum below # Problem with R_{rms}^{ch} (e,e) world 0.895 \pm 0.018 fm e-H 0.877 \pm 0.007 fm Udem, PRL79(97)2646 Melnikov, PRL 84(00)1673 μ -H 0.8418 \pm 0.0007 fm Pohl, Nature 466(10)213 ### Severe discrepancy with radius from muonic Hydrogen → much excitement, many (wild) ideas to reconcile, no convincing way out! # Since: new (e,e) data from Bernauer et al. PRL 105(10)242001 completely new set of data $0.4 \dots 5 \ fm^{-1}$ different data taking philosophy ### Better many data points, ~ 1400 use second spectrometer to check luminosity explore several parameterizations ### Worse no absolute cross sections incorrect Coulomb corrections (minor) 34 data sets with 31 free normalizations, most occurring in 2 data sets nightmare to fit systematic errors not given ### Bernauer result $$R_{rms}^{ch} = 0.879 \pm 0.007 \ fm$$ $R_{rms}^{m} = 0.777 \pm 0.02 \ fm$ At first sight nice confirmation of previous R_{rms}^{ch} (although I find larger model dependence) Problematic: disagreement with world value $R_{rms}^m = 0.855 \pm 0.035 fm$ # Understanding effect of R_{rms}^m -discrepancy only 0.3% at q of maximal sensitivity to rms-radius (data oriented towards determination of R_{rms}^{ch} !) # At this level background subtraction no good background from Havar target-window 4 ... 10% not measured! primitive model: rad. tail Havar + quasielastic contr. in Fermigas model no inelastic scattering on Havar Fermi-gas model in threshold region *very* poor # Spectrum shown in thesis shows misfit amounting to 1.2% in cross section! # 1.2% very significant as compared to 0.3%! # My conclusion R^m_{rms} is not significant, \rightarrow ignore On the positive side tests with various assumptions on background show: effect upon R_{rms}^{ch} small # Unsatisfactory in general: size error bar of R_{rms} for A>1 δR_{rms} smaller, despite poorer data base fits to \pm same data gave radii differing by 4% (Arrington, Borisyuk,...) ### Reason for proton shape $\rho(r) \sim$ exponential since $G_e \sim$ dipole ightarrow important role of large-radius tail, see $R(r_{cut})/R = [\int_0^{r_{cut}} \rho(r) r^4 dr/\int_0^{\infty} \rho(r) r^4 dr]^{1/2}$ in tail ρ small, poorly determined for 98% of \int need to integrate to $r_{cut} = 3 \cdot R_{rms}$ remaining 2%: effect upon $\sigma(q>0.5fm^{-1})$ is <0.2% not measurable R_{rms} with 1%-type accuracy is an illusion! ``` To do better: constrain shape of large-r tail add physics \rightarrow get more accurate rms-radius ``` # Physical model for large r least-bound Fock state: $p = n + \pi^+$, $n = p + \pi^-$ dominates $\rho(r)$ completely at large-enough r (> 0.8fm in cloudy bag model) will use as constraint # To exploit need relation $G_e(q) \leftrightarrow \rho(r)$ for accurate shape need data up to largest q's must account for relativistic corrections not discussed here have been accounted for for large r minor uncertainty due to ambiguities involved # Calculation of density at very large r a priori: asymptotic form = Whittaker function $W_{-\eta,3/2}(2\kappa r)/r$ with physical masses $m_N, m_\pi, l{=}1$ with separation energy = m_π , include CM-correction makes sense only at large n- π relative distance: $R^p_{rms}=0.89fm,~R^\pi_{rms}=0.66fm$ only at large r overlap n, π small ### potential difficulty need to fold W^2/r^2 with charge distribution of n, π could get into trouble with r=0 divergence of W/r ### In practice calculate w.f. in square well potential, V(r > R) = 0 (courtesy D.Trautmann) radius R = 0.8 fm (not important), depth adjusted to separation energy for r>R shape of $\psi^2\equiv$ shape of Whittaker function can easily fold expect small difference Schrödinger-Klein-Gordon (DT) ### Result excellent agreement with shape of $ho_{exp}(r)$ (fit world data with Pade) norm fit to ρ_{exp} ### "Refinements" of model allow also for $\Delta + \pi$ contribution coefficients of various terms from Dziembowski,...,Speth 'Pionic contribution to nucleon EM properties in light-front approach' include all states: $\pi^+ n$, $\pi^- p$, $\pi^- \Delta^{++}$, $\pi^+ \Delta^0$, $\pi^- \Delta^+$, $\pi^+ \Delta^-$ calculate similarly effect on p-tail: small, a bit closer to ρ_{exp} towards smaller r effect on n-tail: larger, gets close to ρ_{exp} with exactly same parameters will ignore n since components $\neq \pi^- p$ too important ### Data used in fit - world (e,e) data up to 12 fm^{-1} both cross sections and polarization data, 605 data points - for some fits add Bernauer σ with 0.2% quadr. added - two-photon exchange corrections needed to make G_{ep} from σ and P agree includes both soft+hard photons uses phenomenological modification for very large q Melnitchouk+Tjon - (relative) tail density for r > 1.3fm ## Parameterization for G_e and G_m use r-space parameterization to implement constraint Sum-Of-Gaussians (SOG) parameterization: flexible + convenient #### Detail placed every $\sim 0.3 fm$, for r < 3.3 fm amplitudes fit to σ , P, constraint 30 parameters ### Results average over various data sets and treatments of normalization $$R_{rms}^{ch} = .886 \, \pm \, 0.008 \; fm$$ $R_{rms}^{m} = .858 \, \pm \, .024 \; fm$ ### Great feature result much less sensitive to use of absolute vs. floated data Conclusion: disagreement with μ -H confirmed. Question: to which degree could fit (e,e) with R^{μ}_{rms} as constraint? redo analysis with various combinations of data sets floated or fixed normalization constraint $R_{rms}^{ch}=0.84\ fm$ # Increase in χ^2 due to constraint | Bernauer | 5% | |--------------------------|-----| | world floated + Bernauer | 8% | | world floated $+$ tail | 10% | | world + tail | 24% | | world + Bernauer + tail | 24% | ### Results show that - 1. With floating data and no tail constraint: can change R_{rms}^{ch} with modest effect upon χ^2 for Bernauer data effect on $\sigma_{exp}/\sigma_{fit}$ not visible - 2. With tail constraint: get larger increase - 3. Absolute σ + tail: fixes rms-radius best gives also visible disagreement in data/fit world data 2-3% below fit # Overall conclusion: problem with R_{rms}^{ch} persists # Many speculations on origin Missing QED terms? Two-photon effects in (e,e)? Polarization of proton in μ H? Problems with radiative corrections? Wrong Zemach moment? Recoil terms in μ H? (e,e) and μ H not measuring same thing? but there are plausible arguments against all Upshot: no clear idea available, and there is a real problem Backup # New value of radius from polarization transfer data? measure G_e/G_m at JLab using polarization transfer at "low" q claim to improve knowledge on rms-radii, in particular R_{rms}^m Sensitivity of data to rms-radii: $0.5 < q < 1.2 fm^{-1}$ $$\uparrow q=2.7fm^{-1}$$ radius corresponds to slope of G(q) at q=0! must go to real low q to measure lowest q-point of polarization transfer is $q=2.7fm^{-1}$ # Consequence: polarization transfer contribute *nothing* to knowledge of *rms*-radii radii entirely determined by previous cross section data.