Problems with proton radii

Ingo Sick

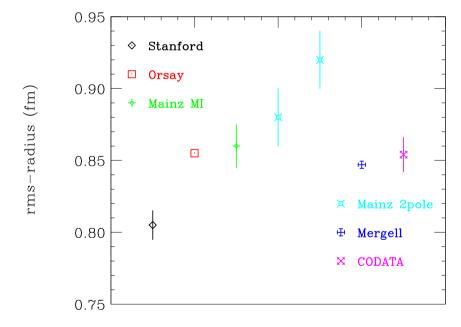
Interest: rms-radii = fundamental quantities to describe size

needed for interpretation of atomic hydrogen hyper-precise transition energies, 13 digits

 $\delta R_{rms} = \text{biggest uncertainty}$

 $R_{rms} = \text{quantity from (e,e) of most interest to physicists from outside (e,e)}$

History of charge R_{rms} from (e,e): very checkered



Reasons for scatter

 $G_e(q)$ and $G_m(q)$ obtained from L/T-separation

$$rac{d\sigma}{d\Omega} = \sigma_{Mott} f_{recoil} igl[(G_e^2 + au G_m^2)/(1+ au) + 2 au G_m^2 t g^2(heta/2) igr]$$

 $au=q^2/4m^2,\,m=$ proton mass, $q\sim 2Esin(\theta/2)=$ momentum transfer

- fit of G's from individual experiments with chosen parameterization
- no Coulomb corrections
- problems with convergence radius of parameterization used

Solution

- ullet use world cross sections optimal L/T-separation during fit
- use Coulomb corrections
- use Pade approximants to parameterize

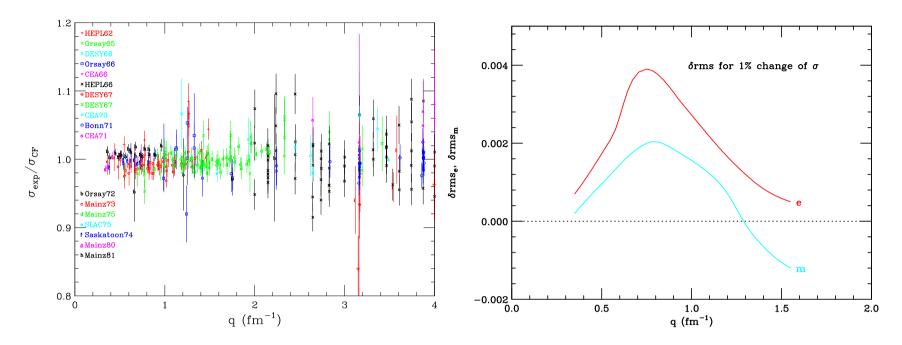
Result

I.S. Phys.Lett. B576 (03) 62
$$R_{rms}^{ch} = 0.895 \pm 0.018 fm$$
 $R_{rms}^{m} = 0.855 \pm 0.035 fm$

Very conservative error bars

statistical errors from error matrix systematic errors of data included change σ by syst.error, refit, add changes quadratically

sensitivity to R_{rms} : $0.5 \div 1.2 \text{fm}^{-1}$



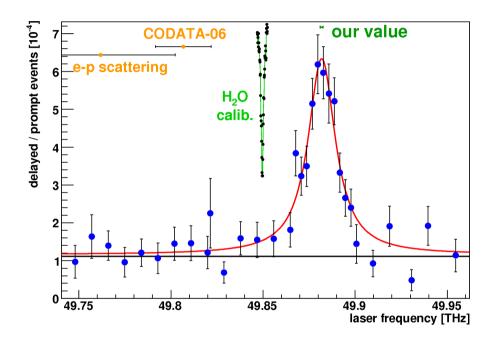
Identify and understand deviations of previous determinations

Zemach moments also determined to $\pm 1\%$

needed for atomic HFS (second Zemach moment) needed for muonic Hydrogen (third Zemach moment)

New: Precise data on atomic Hydrogen

- energies in electronic H measured to 13 digits
- Lamb shift in muonic H measured, see spectrum below



Problem with R_{rms}^{ch}

(e,e) world 0.895 \pm 0.018 fm e-H 0.877 \pm 0.007 fm Udem, PRL79(97)2646 Melnikov, PRL 84(00)1673 μ -H 0.8418 \pm 0.0007 fm Pohl, Nature 466(10)213

Severe discrepancy with radius from muonic Hydrogen

→ much excitement, many (wild) ideas to reconcile, no convincing way out!

Since: new (e,e) data from Bernauer et al. PRL 105(10)242001 completely new set of data $0.4 \dots 5 \ fm^{-1}$ different data taking philosophy

Better

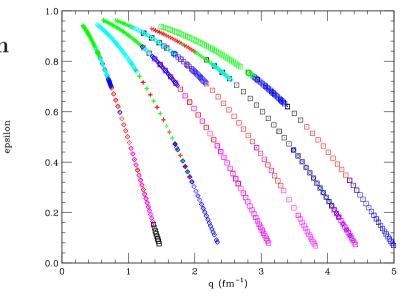
many data points, ~ 1400 use second spectrometer to check luminosity explore several parameterizations

Worse

no absolute cross sections incorrect Coulomb corrections (minor)

34 data sets with 31 free normalizations, most occurring in 2 data sets

nightmare to fit systematic errors not given



Bernauer result

$$R_{rms}^{ch} = 0.879 \pm 0.007 \ fm$$

 $R_{rms}^{m} = 0.777 \pm 0.02 \ fm$

At first sight nice confirmation of previous R_{rms}^{ch} (although I find larger model dependence)

Problematic: disagreement with world value $R_{rms}^m = 0.855 \pm 0.035 fm$

Understanding

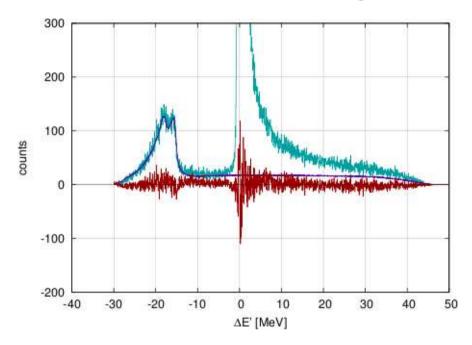
effect of R_{rms}^m -discrepancy only 0.3% at q of maximal sensitivity to rms-radius (data oriented towards determination of R_{rms}^{ch} !)

At this level background subtraction no good

background from Havar target-window 4 ... 10% not measured! primitive model: rad. tail Havar + quasielastic contr. in Fermigas model no inelastic scattering on Havar Fermi-gas model in threshold region *very* poor

Spectrum shown in thesis

shows misfit amounting to 1.2% in cross section!



1.2% very significant as compared to 0.3%!

My conclusion

 R^m_{rms} is not significant, \rightarrow ignore

On the positive side

tests with various assumptions on background show: effect upon R_{rms}^{ch} small

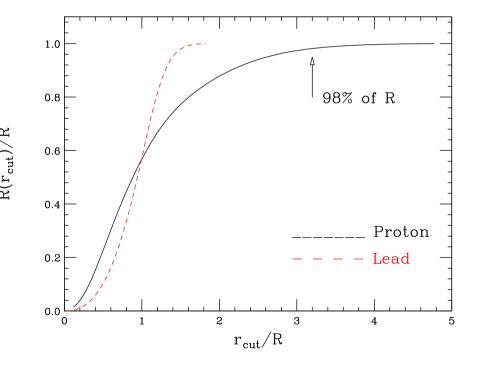
Unsatisfactory in general: size error bar of R_{rms}

for A>1 δR_{rms} smaller, despite poorer data base fits to \pm same data gave radii differing by 4% (Arrington, Borisyuk,...)

Reason

for proton shape $\rho(r) \sim$ exponential since $G_e \sim$ dipole

ightarrow important role of large-radius tail, see $R(r_{cut})/R = [\int_0^{r_{cut}} \rho(r) r^4 dr/\int_0^{\infty} \rho(r) r^4 dr]^{1/2}$ in tail ρ small, poorly determined



for 98% of \int need to integrate to $r_{cut} = 3 \cdot R_{rms}$ remaining 2%:

effect upon $\sigma(q>0.5fm^{-1})$ is <0.2% not measurable

 R_{rms} with 1%-type accuracy is an illusion!

```
To do better: constrain shape of large-r tail add physics \rightarrow get more accurate rms-radius
```

Physical model for large r

least-bound Fock state: $p = n + \pi^+$, $n = p + \pi^-$ dominates $\rho(r)$ completely at large-enough r (> 0.8fm in cloudy bag model) will use as constraint

To exploit need relation $G_e(q) \leftrightarrow \rho(r)$

for accurate shape need data up to largest q's must account for relativistic corrections not discussed here have been accounted for for large r minor uncertainty due to ambiguities involved

Calculation of density at very large r

a priori: asymptotic form = Whittaker function $W_{-\eta,3/2}(2\kappa r)/r$ with physical masses $m_N, m_\pi, l{=}1$ with separation energy = m_π , include CM-correction

makes sense only at large n- π relative distance: $R^p_{rms}=0.89fm,~R^\pi_{rms}=0.66fm$ only at large r overlap n, π small

potential difficulty

need to fold W^2/r^2 with charge distribution of n, π could get into trouble with r=0 divergence of W/r

In practice

calculate w.f. in square well potential, V(r > R) = 0 (courtesy D.Trautmann) radius R = 0.8 fm (not important), depth adjusted to separation energy

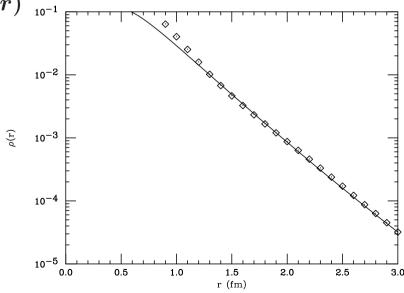
for r>R shape of $\psi^2\equiv$ shape of Whittaker function can easily fold

expect small difference Schrödinger-Klein-Gordon (DT)

Result

excellent agreement with shape of $ho_{exp}(r)$ (fit world data with Pade)

norm fit to ρ_{exp}



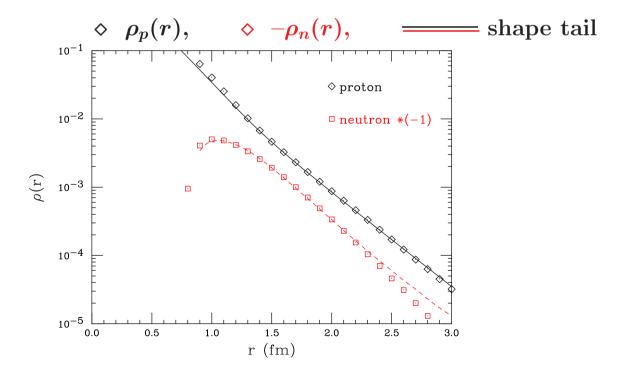
"Refinements" of model

allow also for $\Delta + \pi$ contribution coefficients of various terms from Dziembowski,...,Speth

'Pionic contribution to nucleon EM properties in light-front approach' include all states: $\pi^+ n$, $\pi^- p$, $\pi^- \Delta^{++}$, $\pi^+ \Delta^0$, $\pi^- \Delta^+$, $\pi^+ \Delta^-$ calculate similarly

effect on p-tail: small, a bit closer to ρ_{exp} towards smaller r

effect on n-tail: larger, gets close to ρ_{exp} with exactly same parameters will ignore n since components $\neq \pi^- p$ too important



Data used in fit

- world (e,e) data up to 12 fm^{-1} both cross sections and polarization data, 605 data points
- for some fits add Bernauer σ with 0.2% quadr. added
- two-photon exchange corrections needed to make G_{ep} from σ and P agree includes both soft+hard photons uses phenomenological modification for very large q Melnitchouk+Tjon
- (relative) tail density for r > 1.3fm

Parameterization for G_e and G_m

use r-space parameterization to implement constraint Sum-Of-Gaussians (SOG) parameterization: flexible + convenient

Detail

placed every $\sim 0.3 fm$, for r < 3.3 fm amplitudes fit to σ , P, constraint 30 parameters

Results

average over various data sets and treatments of normalization

$$R_{rms}^{ch} = .886 \, \pm \, 0.008 \; fm$$
 $R_{rms}^{m} = .858 \, \pm \, .024 \; fm$

Great feature

result much less sensitive to use of absolute vs. floated data

Conclusion: disagreement with μ -H confirmed.

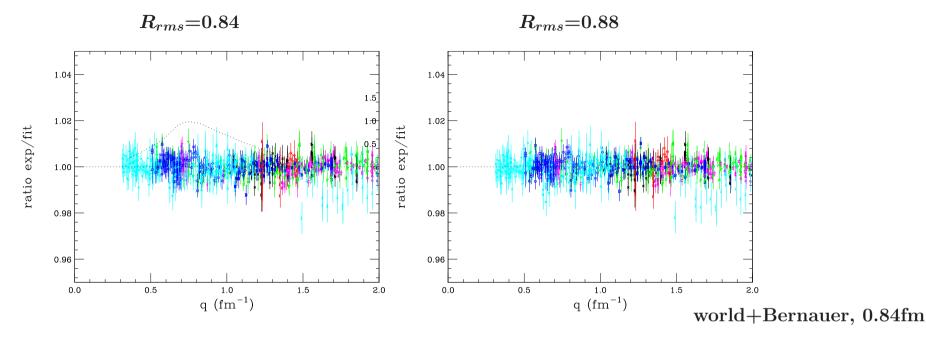
Question: to which degree could fit (e,e) with R^{μ}_{rms} as constraint?

redo analysis with various combinations of data sets floated or fixed normalization constraint $R_{rms}^{ch}=0.84\ fm$

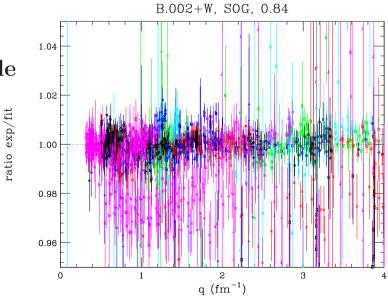
Increase in χ^2 due to constraint

Bernauer	5%
world floated + Bernauer	8%
world floated $+$ tail	10%
world + tail	24%
world + Bernauer + tail	24%

Results show that



- 1. With floating data and no tail constraint: can change R_{rms}^{ch} with modest effect upon χ^2 for Bernauer data effect on $\sigma_{exp}/\sigma_{fit}$ not visible
- 2. With tail constraint: get larger increase
- 3. Absolute σ + tail: fixes rms-radius best gives also visible disagreement in data/fit world data 2-3% below fit



Overall conclusion: problem with R_{rms}^{ch} persists

Many speculations on origin

Missing QED terms? Two-photon effects in (e,e)? Polarization of proton in μ H? Problems with radiative corrections? Wrong Zemach moment? Recoil terms in μ H? (e,e) and μ H not measuring same thing?

.... but there are plausible arguments against all

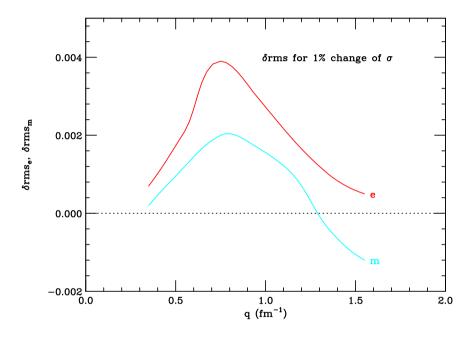
Upshot: no clear idea available, and there is a real problem

Backup

New value of radius from polarization transfer data?

measure G_e/G_m at JLab using polarization transfer at "low" q claim to improve knowledge on rms-radii, in particular R_{rms}^m

Sensitivity of data to rms-radii: $0.5 < q < 1.2 fm^{-1}$



$$\uparrow q=2.7fm^{-1}$$

radius corresponds to slope of G(q) at q=0! must go to real low q to measure lowest q-point of polarization transfer is $q=2.7fm^{-1}$

Consequence:

polarization transfer contribute *nothing* to knowledge of *rms*-radii radii entirely determined by previous cross section data.