Hadron Structure in Lattice QCD

C. Alexandrou

University of Cyprus and Cyprus Institute

From Quarks and Gluons to Hadrons and Nuclei
Erice, 16-24 September 2011

Outline

(1) Introduction

- QCD on the lattice
- Computational cost
- Recent results
(2) Nucleon Generalized form factors
- Definitions
- Results on nucleon form factors
- Nucleon spin
(3) N to Δ transition form factors
- $N \gamma^{*} \rightarrow \Delta$
- N to Δ axial-vector and pseudoscalar form factors
(4) Δ form factors
- Δ electromagnetic form factors
- Δ axial-vector form factors
- Pseudo-scalar Δ form factors
(5) Conclusions

Introduction

Numerical simulation of QCD already provides essential input for a wide class of strong interaction phenomena

- QCD phase diagram relevant for Quark-Gluon Plasma: $t \sim 10^{-32}$ s and $T \sim 10^{27}$, studied in heavy ion collisions at RHIC and LHC
- Hadron structure: $t \sim 10^{-6} \mathrm{~s}$, experimental program at JLab, Mainz.
- Momentum distribution of quarks and gluons in the nucleon
- Hadron form factors e.g. the nucleon axial charge g_{A}
- Nuclear forces: $t \sim 10^{9}$ years, affect the large scale structure of the Universe

Exa-scale machines are required to go beyond hadrons to nuclei

QCD on the lattice

- Discretization of space-time in 4 Euclidean dimensions \rightarrow Rotation into imaginary time is the most drastic modification Lattice acts as a non-perturbative regularization scheme with the lattice spacing a providing an ultraviolet cutoff at $\pi / a \rightarrow$ no infinities

- Gauge fields are links and fermions are anticommuting Grassmann variables defined at each site of the lattice. They belong to the fundamental representation of $\mathrm{SU}(3)$
- Construction of an appropriate action such that when $a \rightarrow 0$ (and Volume $\rightarrow \infty$) it gives the continuum theory
- Construction of the appropriate operators with their renormalization to extract physical quantities
- Can be simulated on the computer using methods analogous to those used for Statistical Mechanics systems
\rightarrow Allows calculations of correlation functions of hadronic operators and matrix elements of any operator between hadronic states in terms of the fundamental quark and gluon degrees of freedom with only input parameters the coupling constant and the quarks masses.
\Longrightarrow Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly from the QCD Langragian.
- Finite Volume:

1. Finite volume effects need to be studied \rightarrow Take box sizes such that $L_{s} m$
2. Only discrete values of momentum in units of $2 \pi / L_{S}$ are allowed.

- Finite lattice spacing: Need at least three values of the lattice spacing in order to extrapolate to the continuum limit.
- q^{2}-values: Fourier transform of lattice results in coordinate space taken numerically \rightarrow for large values of momentum transfer results are too noisy \Longrightarrow Limited to Q^{2}

QCD on the lattice

- Discretization of space-time in 4 Euclidean dimensions \rightarrow Rotation into imaginary time is the most drastic modification Lattice acts as a non-perturbative regularization scheme with the lattice spacing a providing an ultraviolet cutoff at $\pi / a \rightarrow$ no infinities

- Gauge fields are links and fermions are anticommuting Grassmann variables defined at each site of the lattice. They belong to the fundamental representation of $\mathrm{SU}(3)$
- Construction of an appropriate action such that when $a \rightarrow 0$ (and Volume $\rightarrow \infty$) it gives the continuum theory
- Construction of the appropriate operators with their renormalization to extract physical quantities
- Can be simulated on the computer using methods analogous to those used for Statistical Mechanics systems
\rightarrow Allows calculations of correlation functions of hadronic operators and matrix elements of any operator between hadronic states in terms of the fundamental quark and gluon degrees of freedom with only input parameters the coupling constant and the quarks masses.
\Longrightarrow Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly from the QCD Langragian.
Consider simplest isotropic hypercubic grid: $a=a_{S}=a_{T}$ and size $N_{S} \times N_{S} \times N_{S} \times N_{T}, N_{T}>N_{S}$.
- Finite Volume:

1. Finite volume effects need to be studied \rightarrow Take box sizes such that $L_{S} m_{\pi} \gtrsim 3.5$.
2. Only discrete values of momentum in units of $2 \pi / L_{S}$ are allowed.

- Finite lattice spacing: Need at least three values of the lattice spacing in order to extrapolate to the continuum limit.
- q^{2}-values: Fourier transform of lattice results in coordinate space taken numerically \rightarrow for large values of momentum transfer results are too noisy \Longrightarrow Limited to $Q^{2}=-q^{2} \sim 2 \mathrm{GeV}^{2}$.

Computational cost

Simulation cost: $C_{\text {sim }} \propto\left(\frac{300 \mathrm{MeV}}{m_{\pi}}\right)^{c_{m}}\left(\frac{L}{2 \mathrm{fm}}\right)^{c_{L}}\left(\frac{0.1 \mathrm{fm}}{a}\right)^{c_{a}}$

$\mathrm{L}=2.1 \mathrm{fm}, \mathrm{a}=0.089 \mathrm{fm}, \mathrm{K}$. Jansen and C. Urbach, arXiv:0905.3331

Coefficients c_{m}, c_{L} and c_{a} depend on the discretized action used for the fermions.
State-of-the-art simulations use improved algorithms:

- Mass preconditioner, M. Hasenbusch, Phys. Lett. B519 (2001) 177
- Multiple time scales in the molecular dynamics updates
\Longrightarrow for twisted mass fermions: $c_{m} \sim 4, c_{L} \sim 5$ and $c_{a} \sim 6$.
- Results at physical quark masses require $\mathcal{O}(1)$ Pflop. Years.
- After post-diction of well measured quantities the goal is to predict quantities that are difficult or impossible to measure experimentally.

Mass of low-lying hadrons

$N_{F}=2+1$ smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008)
$N_{F}=2$ twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

- BMW with $N_{F}=2+1$:
- 3 lattice spacings:
$a \sim 0.125,0.085,0.065 \mathrm{fm}$ set by m_{\equiv}
- Pion masses: $m_{\pi} \sim 190 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L \sim 4$
- ETMC with $N_{F}=2$:
- 3 lattice spacings: $a=0.089,0.070, a=0.056 \mathrm{fm}$, set by
$\Rightarrow m_{\pi}>260 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L>3.3$

Good agreement between different discretization schemes \Longrightarrow Significant progress in understanding the masses of low-lying mesons and baryons

Mass of low-lying hadrons

$N_{F}=2+1$ smeared Clover fermions, BMW Collaboration, S. Dürr et al. Science 322 (2008)
$N_{F}=2$ twisted mass fermions, ETM Collaboration, C. Alexandrou et al. PRD (2008)

Baryon Spectrum

- BMW with $N_{F}=2+1$:
- 3 lattice spacings: $a \sim 0.125,0.085,0.065 \mathrm{fm}$ set by $m_{\text {三 }}$
- Pion masses: $m_{\pi} \sim 190 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L \sim 4$
- ETMC with $N_{F}=2$:
- 3 lattice spacings:
$a=0.089,0.070, a=0.056 \mathrm{fm}$, set by
m_{N}
- $m_{\pi} \sim 260 \mathrm{MeV}$
- Volumes: $m_{\pi}^{\min } L \sim 3.3$

Good agreement between different discretization schemes \Longrightarrow Significant progress in understanding the masses of low-lying mesons and baryons

Pion form factor

Several Collaborations using dynamical quarks with pion masses down to about 300 MeV

- Examine volume and cut-off effects \Rightarrow estimate continuum and infinite volume values
- Twisted boundary conditions to probe small $Q^{2}=-q^{2}, \rightarrow$ Talk by A. Juttner
- All-to-all propagators and 'one-end trick' to obtain accurate results
- Chiral extrapolation using NNLO \rightarrow

B.B. Brandt, A. Juttner, H. Wittig (CLS) arXiv:1109.0196

Pion form factor

Several Collaborations using dynamical quarks with pion masses down to about 300 MeV
ETMC, $N_{F}=2$, R. Frezzotti, V. Lubicz and S. Simula, PRD 79, 074506 (2009)

- Examine volume and cut-off effects \Rightarrow estimate continuum and infinite volume values
- Twisted boundary conditions to probe small $Q^{2}=-q^{2}, \rightarrow$ Talk by A. Juttner
- All-to-all propagators and 'one-end trick' to obtain accurate results
- Chiral extrapolation using NNLO $\rightarrow\left\langle r^{2}\right\rangle$ and $F_{\pi}\left(Q^{2}\right)=\left(1+\left\langle r^{2}\right\rangle Q^{2} / 6\right)^{-1}$

Pion form factor

Several Collaborations using dynamical quarks with pion masses down to about 300 MeV
ETMC, $N_{F}=2$, R. Frezzotti, V. Lubicz and S. Simula, PRD 79, 074506 (2009)

- Examine volume and cut-off effects \Rightarrow estimate continuum and infinite volume values
- Twisted boundary conditions to probe small $Q^{2}=-q^{2}, \rightarrow$ Talk by A. Juttner
- All-to-all propagators and 'one-end trick' to obtain accurate results
- Chiral extrapolation using NNLO $\rightarrow\left\langle r^{2}\right\rangle$ and $F_{\pi}\left(Q^{2}\right)=\left(1+\left\langle r^{2}\right\rangle Q^{2} / 6\right)^{-1}$

ρ-meson width

- Consider $\pi^{+} \pi^{-}$in the $I=1$-channel
- Estimate P-wave scattering phase shift $\delta_{11}(k)$ using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{E\left(m_{R}^{2}-E^{2}\right)}, k=\sqrt{E^{2} / 4-m_{\pi}^{2}} \rightarrow$ determine m_{R} and $g_{\rho \pi \pi}$ and then extract $\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{R}^{3}}{m_{R}^{2}}, k_{R}=\sqrt{m_{R}^{2} / 4-m_{\pi}^{2}}$

$$
m_{\pi}=309 \mathrm{MeV}, L=2.8 \mathrm{fm}
$$

$N_{F}=2$ twisted mass fermions, Xu Feng, K. Jansen and D. Renner, Phys. Rev. D83 (2011) 094505

ρ-meson width

- Consider $\pi^{+} \pi^{-}$in the $I=1$-channel
- Estimate P-wave scattering phase shift $\delta_{11}(k)$ using finite size methods
- Use Lüscher's relation between energy in a finite box and the phase in infinite volume
- Use Center of Mass frame and Moving frame
- Use effective range formula: $\tan \delta_{11}(k)=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k^{3}}{E\left(m_{R}^{2}-E^{2}\right)}, k=\sqrt{E^{2} / 4-m_{\pi}^{2}} \rightarrow$ determine m_{R} and $g_{\rho \pi \pi}$ and then extract $\Gamma_{\rho}=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{k_{R}^{3}}{m_{R}^{2}}, k_{R}=\sqrt{m_{R}^{2} / 4-m_{\pi}^{2}}$

$$
m_{\pi}=309 \mathrm{MeV}, L=2.8 \mathrm{fm}
$$

$N_{F}=2$ twisted mass fermions, Xu Feng, K. Jansen and D. Renner, Phys. Rev. D83 (2011) 094505

Definition of Generalized Form Factors

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p^{\prime} and $p \rightarrow$ Generalized Parton Distributions (GPDs), X. Ji, J. Phys. G24(1998)1181

$$
F_{\Gamma}\left(x, \xi, q^{2}\right)=\frac{1}{2} \int \frac{d \lambda}{2 \pi} e^{i x \lambda}\left\langle p^{\prime}\right| \bar{\psi}(-\lambda n / 2) \Gamma \mathcal{P} e^{i g \int_{-\lambda / 2}^{\lambda / 2} d \alpha n \cdot A(n \alpha)} \psi(\lambda n / 2)|p\rangle
$$

where $q=p^{\prime}-p, \bar{P}=\left(p^{\prime}+p\right) / 2, n$ is a light-cone vector and $\bar{P} . n=1$

$$
\begin{aligned}
\Gamma=\neq & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not \hbar H\left(x, \xi, q^{2}\right)+i \frac{n_{\mu} q_{\nu} \sigma^{\mu \nu}}{2 m} E\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=\not \subset \gamma_{5} & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not \hbar \gamma_{5} \tilde{H}\left(x, \xi, q^{2}\right)+\frac{n \cdot q \gamma_{5}}{2 m} \tilde{E}\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=n_{\mu} \sigma^{\mu \nu} & \rightarrow \text { tensor GPDs }
\end{aligned}
$$

"Handbag" diagram

Expansion of the light cone operator leads to a tower of local twist-2 operators $\mathcal{O}^{\mu_{1} \cdots \mu_{n}}$:

- Diagonal matrix element $\langle P| \mathcal{O}(x)|P\rangle$ (DIS) \rightarrow parton distributions: $q(x), \Delta q(x), \delta q(x)$
- Off-diagonal matrix elements (DVCS) \rightarrow generalized form factors

Definition of Generalized Form Factors

High energy scattering: Formulate in terms of light-cone correlation functions, M. Diehl, Phys. Rep. 388 (2003) Consider one-particle states p^{\prime} and $p \rightarrow$ Generalized Parton Distributions (GPDs), X. Ji, J. Phys. G24(1998)1181

$$
F_{\Gamma}\left(x, \xi, q^{2}\right)=\frac{1}{2} \int \frac{d \lambda}{2 \pi} e^{i x \lambda}\left\langle p^{\prime}\right| \bar{\psi}(-\lambda n / 2) \Gamma \mathcal{P} e^{i g-\lambda / 2} \int^{\lambda / 2} d \alpha n \cdot A(n \alpha) \quad \psi(\lambda n / 2)|p\rangle
$$

where $q=p^{\prime}-p, \bar{P}=\left(p^{\prime}+p\right) / 2, n$ is a light-cone vector and $\bar{P} . n=1$

$$
\begin{aligned}
\Gamma=\emptyset & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not \hbar H\left(x, \xi, q^{2}\right)+i \frac{n_{\mu} q_{\nu} \sigma^{\mu \nu}}{2 m} E\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=\not \subset \gamma_{5} & \rightarrow \frac{1}{2} \bar{u}\left(p^{\prime}\right)\left[\not \hbar \gamma_{5} \tilde{H}\left(x, \xi, q^{2}\right)+\frac{n \cdot q \gamma_{5}}{2 m} \tilde{E}\left(x, \xi, q^{2}\right)\right] u(p) \\
\Gamma=n_{\mu} \sigma^{\mu \nu} & \rightarrow \text { tensor GPDs }
\end{aligned}
$$

"Handbag" diagram

Expansion of the light cone operator leads to a tower of local twist-2 operators $\mathcal{O}^{\mu_{1}} \ldots \mu_{n}$:

- Diagonal matrix element $\langle P| \mathcal{O}(x)|P\rangle$ (DIS) \rightarrow parton distributions: $q(x), \Delta q(x), \delta q(x)$

$$
\begin{array}{ccl}
\mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu_{n}}=\bar{q} \gamma^{\{\mu} i D^{\mu_{1}} \ldots i D^{\left.\mu_{n}\right\}} q & \xrightarrow{\text { unpolarized }} & \left\langle x^{n}\right\rangle_{q}=\int_{0}^{1} d x x^{n}\left[q(x)-(-1)^{n} \bar{q}(x)\right] \\
\tilde{\mathcal{O}}_{\Delta q}^{\mu \mu \mu_{1} \ldots \mu_{n}}=\bar{q} \gamma_{5} \gamma^{\{\mu} i D^{\mu_{1}} \ldots i D^{\mu n\}} q & \xrightarrow{\text { helicity }} & \left\langle x^{n}\right\rangle_{\Delta q}=\int_{0}^{1} d x x^{n}\left[\Delta q(x)+(-1)^{n} \Delta \bar{q}(x)\right] \\
\mathcal{O}_{\delta q}^{\rho \mu \mu_{1} \ldots \mu_{n}}=\bar{q} \sigma^{\rho\{\mu} i D^{\mu_{1}} \ldots i D^{\left.\mu_{n}\right\}} q & \xrightarrow{\text { transversity }} & \left\langle x^{n}\right\rangle_{\delta q}=\int_{0}^{1} d x x^{n}\left[\delta q(x)-(-1)^{n} \delta \bar{q}(x)\right]
\end{array}
$$

where $q=q_{\downarrow}+q_{\uparrow}, \Delta q=q_{\downarrow}-q_{\uparrow}, \delta q=q_{T}+q_{\perp}$

- Off-diagonal matrix elements (DVCS) \rightarrow generalized form factors

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors:

$$
\begin{aligned}
& \left.\begin{array}{rl}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu_{n}}{ }_{|N(p, s)\rangle\rangle}=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\sum_{\substack{i=0 \\
\text { even }}}^{n}(\right. & A_{n+1, i}\left(q^{2}\right) \gamma^{\{\mu}+B_{n+1, i}\left(q^{2}\right) \frac{i \sigma\{\mu \alpha}{2 m} q_{\alpha} \\
2 m
\end{array}\right) q^{\mu_{1}} \ldots q^{\mu_{i} \bar{P}^{\mu_{i+1}} \ldots \bar{P}^{\left.\mu_{n}\right\}}} \\
& \left.\quad+\bmod (n, 2) C_{n+1,0}\left(q^{2}\right) \frac{1}{m} q^{\{\mu} q^{\mu_{1}} \ldots q^{\left.\mu_{n}\right\}}\right] u(p, s)
\end{aligned}
$$

Special cases:

- $n=1$: ordinary nucleon form factors

$A_{10}\left(q^{2}\right)=F_{1}\left(q^{2}\right)=\int_{-1}^{1} d x H\left(x, \xi, q^{2}\right)$,	$B_{10}\left(q^{2}\right)=F_{2}\left(q^{2}\right)=\int_{-1}^{1} d x E\left(x, \xi, q^{2}\right)$
$\tilde{A}_{10}\left(q^{2}\right)=G_{A}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{H}\left(x, \xi, q^{2}\right)$,	$\tilde{B}_{10}\left(q^{2}\right)=G_{p}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{E}\left(x, \xi, q^{2}\right)$

where

- $i_{1,}=\bar{\psi}_{\mu_{\mu}} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{\operatorname{lo}_{\mu \nu} q^{\prime \prime}}{2 m} F_{2}\left(q^{2}\right)$ Dirac F_{1} and Pauli F_{2} are related to the electric and magnetic Sachs form factors:
$\Rightarrow j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}$
- $A_{n-0}(0) \tilde{A}_{n 0}(0) A^{T}(0)$ are moments of narton distributions eg. $\langle x\rangle_{q}=A_{20}(0)$ and $\langle x\rangle \Delta q=\tilde{A}_{20}(0)$ are the spin independent and helicity distributions
\rightarrow can evaluate quark spin, $J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}$
\rightarrow nucleon spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}, \quad$ momentum sum rule: $\langle x\rangle_{g}=1-A_{20}(0)$

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors:
$\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu_{n}}|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\sum_{\substack{\text { even }}}^{n}\left(A_{n+1, i}\left(q^{2}\right) \gamma\left\{\mu+B_{n+1, i}\left(q^{2}\right) \frac{i \sigma\{\mu \alpha}{2 m}\right) q^{\mu_{1}} \ldots q^{\left.\mu_{i} \bar{P}^{\mu_{i+1}} \ldots \bar{P}^{\mu_{n}}\right\}}\right.\right.$ $\left.\left.+\bmod (n, 2) C_{n+1,0}\left(q^{2}\right) \frac{1}{m} q^{\{\mu} q^{\mu_{1}} \ldots q^{\mu n}\right\}\right] u(p, s)$
And similarly for $\mathcal{O}_{\Delta q}$ in terms of $\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)$ and $\mathcal{O}_{\delta q}$ in terms of $A_{n i}^{T}, B_{n i}^{T}, C_{n i}^{T}$ and $D_{n i}^{T}$

Special cases:

- $n=1$: ordinary nucleon form factors

$$
\begin{aligned}
A_{10}\left(q^{2}\right)=F_{1}\left(q^{2}\right) & =\int_{-1}^{1} d x H\left(x, \xi, q^{2}\right), & B_{10}\left(q^{2}\right)=F_{2}\left(q^{2}\right)=\int_{-1}^{1} d x E\left(x, \xi, q^{2}\right) \\
\tilde{A}_{10}\left(q^{2}\right)=G_{A}\left(q^{2}\right) & =\int_{-1}^{1} d x \tilde{H}\left(x, \xi, q^{2}\right), & \tilde{B}_{10}\left(q^{2}\right)=G_{p}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{E}\left(x, \xi, q^{2}\right)
\end{aligned}
$$

where

- $j_{\mu}=\bar{\psi} \gamma_{\mu} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m} F_{2}\left(q^{2}\right)$

The Dirac F_{1} and Pauli F_{2} are related to the electric and magnetic Sachs form factors:

$$
\begin{aligned}
& \quad G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
& \\
& j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}
\end{aligned}
$$

Nucleon generalized form factors

Decomposition of matrix elements into generalized form factors:
$\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{q}^{\mu \mu_{1} \ldots \mu_{n}}|N(p, s)\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[\sum_{\substack{\text { even }}}^{n}\left(A_{n+1, i}\left(q^{2}\right) \gamma\left\{\mu+B_{n+1, i}\left(q^{2}\right) \frac{i \sigma\{\mu \alpha}{2 m}\right) q^{\mu_{1}} \ldots q^{\left.\mu_{i} \bar{P}^{\mu_{i+1}} \ldots \bar{P}^{\mu_{n}}\right\}}\right.\right.$ $\left.\left.+\bmod (n, 2) C_{n+1,0}\left(q^{2}\right) \frac{1}{m} q^{\{\mu} q^{\mu_{1}} \ldots q^{\mu n}\right\}\right] u(p, s)$
And similarly for $\mathcal{O}_{\Delta q}$ in terms of $\tilde{A}_{n i}\left(q^{2}\right), \tilde{B}_{n i}\left(q^{2}\right)$ and $\mathcal{O}_{\delta q}$ in terms of $A_{n i}^{T}, B_{n i}^{T}, C_{n i}^{T}$ and $D_{n i}^{T}$

Special cases:

- $n=1$: ordinary nucleon form factors

$$
\begin{array}{cl}
A_{10}\left(q^{2}\right)=F_{1}\left(q^{2}\right)=\int_{-1}^{1} d x H\left(x, \xi, q^{2}\right), & B_{10}\left(q^{2}\right)=F_{2}\left(q^{2}\right)=\int_{-1}^{1} d x E\left(x, \xi, q^{2}\right) \\
\tilde{A}_{10}\left(q^{2}\right)=G_{A}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{H}\left(x, \xi, q^{2}\right), & \tilde{B}_{10}\left(q^{2}\right)=G_{p}\left(q^{2}\right)=\int_{-1}^{1} d x \tilde{E}\left(x, \xi, q^{2}\right)
\end{array}
$$

where

- $j_{\mu}=\bar{\psi} \gamma_{\mu} \psi \Longrightarrow \gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m} F_{2}\left(q^{2}\right)$

The Dirac F_{1} and Pauli F_{2} are related to the electric and magnetic Sachs form factors:

$$
\begin{aligned}
& \quad G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right) \\
& \\
& j_{\mu}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x) \Longrightarrow i\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right] \frac{\tau^{a}}{2}
\end{aligned}
$$

- $A_{n 0}(0), \tilde{A}_{n 0}(0), A_{n 0}^{T}(0)$ are moments of parton distributions, e.g. $\langle x\rangle_{q}=A_{20}(0)$ and $\langle x\rangle_{\Delta q}=\tilde{A}_{20}(0)$ are the spin independent and helicity distributions
\rightarrow can evaluate quark spin, $J_{q}=\frac{1}{2}\left[A_{20}(0)+B_{20}(0)\right]=\frac{1}{2} \Delta \Sigma_{q}+L_{q}$
\rightarrow nucleon spin sum rule: $\frac{1}{2}=\frac{1}{2} \Delta \Sigma_{q}+L_{q}+J_{g}, \quad$ momentum sum rule: $\langle x\rangle_{g}=1-A_{20}(0)$

Lattice evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{a}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}^{\prime}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators Ratios: Leading time dependence cancels

$$
\begin{aligned}
& a E_{\mathrm{eff}}(\vec{q}, t)=\ln [G(\vec{q}, t) / G(\vec{q}, t+a)] \\
& \quad \rightarrow a E(\vec{q})
\end{aligned}
$$

Lattice evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{a}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}^{\prime}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators
Ratios: Leading time dependence cancels

$$
\begin{aligned}
& a E_{\text {eff }}(\vec{q}, t)=\ln [G(\vec{q}, t) / G(\vec{q}, t+a)] \\
& \quad \rightarrow a E(\vec{q})
\end{aligned}
$$

Variational approach in the case of mesons leads to improvement on plateaux: B. Blossier et at., (Alpha Collaboration), JHEP 0904 (2009)

Lattice evaluation

Evaluation of two-point and three-point functions

$$
\begin{aligned}
G(\vec{q}, t) & =\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{a}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
G^{\mu \nu}(\Gamma, \vec{q}, t) & =\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu \nu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle
\end{aligned}
$$

Sequential inversion "through the sink" \rightarrow fix sink-source separation $t_{f}-t_{i}$, final momentum $\vec{p}_{f}=0$, Γ Apply smearing techniques to improve ground state dominance in three-point correlators

Ratios: Leading time dependence cancels

$$
\begin{aligned}
& a E_{\text {eff }}(\vec{q}, t)=\ln [G(\vec{q}, t) / G(\vec{q}, t+a)] \\
& \quad \rightarrow a E(\vec{q}) \\
& \\
& R^{\mu \nu}(\Gamma, \vec{q}, t)=\frac{G^{\mu \nu}((\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \sqrt{\frac{G\left(\vec{p}_{;}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{t}\right)}{G\left(\overrightarrow{0}, t_{t}-t\right) G\left(\vec{p}_{i}, t\right) G\left(\vec{p}_{i}, t_{f}\right)}} \\
& \rightarrow \Pi^{\mu \nu}(\vec{q}, \Gamma)
\end{aligned}
$$

Electric form factor: $t_{f}-t_{i}>1 \mathrm{fm}$ However, this might be operator dependent

Study of excited state contributions

$N_{F}=2+1+1$ with $m_{\pi} \sim 380 \mathrm{MeV}$ and $a=0.08 \mathrm{fm}$

Vary source- sink separation:

S. Dinter, C.A. M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076

Study of excited state contributions

$N_{F}=2+1+1$ with $m_{\pi} \sim 380 \mathrm{MeV}$ and $a=0.08 \mathrm{fm}$

Vary source- sink separation:

\Longrightarrow Excited contributions are operator dependent
g_{A} unaffected, $\langle x\rangle_{u-d} 10 \%$ lower
S. Dinter, C.A. M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076

Non-perturbative renormalization

Most collaborations use non-perturbative renormalization.
ETMC: RI'-MOM renormalization scheme as in e.g. M. Göckeler et al., Nucl. Phys. B544,699

- Fix to Landau gauge and compute:
$S^{u}(p)=\frac{a^{8}}{V} \sum_{x, y} e^{-i p(x-y)}\langle u(x) \bar{u}(y)\rangle$ $G(p)=\frac{a^{12}}{V} \sum_{x, y, z, z^{\prime}} e^{-i p(x-y)}\left\langle u(x) \bar{u}(z) \mathcal{J}\left(z, z^{\prime}\right) d\left(z^{\prime}\right) \bar{d}(y)\right\rangle$
\rightarrow Amputated vertex functions:

$$
\Gamma(p)=\left(S^{u}(p)\right)^{-1} G(p)\left(S^{d}(p)\right)^{-1}
$$

- Renormalization functions: Z_{q} and $Z_{\mathcal{O}}$
- Mass independent renormalization scheme \rightarrow need chiral extrapolations
- Subtract $\mathcal{O}\left(a^{2}\right)$ perturbatively.

Non-perturbative renormalization

Most collaborations use non-perturbative renormalization.

- RBC: Also uses a RI'-MOM renormalization scheme but with momentum independent source, Y. Aoki al. arXiv:1003.3387

Similarly for $<x>_{\Delta u-\Delta d} \rightarrow$ non-perturbative renormalization may explain the lower values observed by LHPC

Disconnected contributions

- Approximate using stochastic techniques
- A study was carried out comparing stochastic methods to the exact evaluation enabled using GPUs; $N_{f}=2$ Wilson fermions (SESAM Collaboration)
- Disconnected loops contributing to nucleon form factors show slow convergence
The truncated solver method is best suited, G. Bali, S. Collins, A.

Schafer Comput.Phys.Commun. 181 (2010) 1570

- Loops with a scalar inversion are much easier to compute

C.A., K. Hadjiyiannakou, G. Koutsou, A. 'O Cais, A. Strelchenko, arXiv:1108.2473

Nucleon form factors

- Many lattice studies down to lowest pion mass of $m_{\pi} \sim 300 \mathrm{MeV}$ \Longrightarrow Lattice data in general agreement
- Axial-vector FFs: $A_{\mu}^{a}=\bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$ $\Longrightarrow \frac{1}{2}\left[\gamma_{\mu} \gamma_{5} G_{A}\left(q^{2}\right)+\frac{q^{\mu} \gamma_{5}}{2 m} G_{p}\left(q^{2}\right)\right]$

Axial charge is well known experimentally, straight forward to compute in lattice QCD

- Agreement among recent lattice results all use non-perturbative Z_{A}
- Weak light quark mass dependence
- What can we say about the physical value of g_{A} ?

Similar discrepancy also for the momentum fraction

Physical results on g_{A}

- What can we say about the physical value of g_{A} ?
- Use results obtained with twisted mass fermions C. A. et al. (ETMC), Phys. Rev. D83 (2011) 045010
- Take continuum limit and estimate volume corrections, A. Ali Khan, et al., PRD 74, 094508 (2006)
- Use one-loop chiral perturbation theory in the small scale expansion (SSE), T. R. Hemmert, M. Procura and W. Weise, PRD 68, 075009 (2003).
- 3 fit parameters, $g_{A}^{0}=1.10(8), g_{\Delta \Delta}=2.1(1.3)$, $C^{S S E}(1 \mathrm{GeV})=-0.7(1.7)$, axial $\mathrm{N} \Delta$ coupling fixed to 1.5: $\Rightarrow g_{A}=1.14(6)$
- Fitting lattice results directly leads to $g_{A}=1.12(7)$

Lattice determination of the axial charges of other baryons can provide input for $\chi \mathrm{PT}$, H.- W. Lin and K. Orginos, PRD 79, 034507 (2009); M. Gockeler et I., arXiv:1102.3407
Volume and discretization errors small compared to the uncertainty in the chiral expansion

Physical results on g_{A}

- What can we say about the physical value of g_{A} ?
- Use results obtained with twisted mass fermions C. A. et al. (ETMC), Phys. Rev. D83 (2011) 045010
- Take continuum limit and estimate volume corrections, A. Ali Khan, et al., PRD 74, 094508 (2006)
- Use one-loop chiral perturbation theory in the small scale expansion (SSE), T. R. Hemmert, M. Procura and W. Weise, PRD 68, 075009 (2003).
- 3 fit parameters, $g_{A}^{0}=1.10(8), g_{\Delta \Delta}=2.1(1.3)$, $C^{S S E}(1 \mathrm{GeV})=-0.7(1.7)$, axial $\mathrm{N} \Delta$ coupling fixed to 1.5: $\Rightarrow g_{A}=1.14(6)$
- Fitting lattice results directly leads to $g_{A}=1.12(7)$

Lattice determination of the axial charges of other baryons can provide input for $\chi \mathrm{PT}, \mathrm{H} .-\mathrm{W}$. Lin and K . Orginos, PRD 79, 034507 (2009); M. Gockeler et I., arXiv:1102.3407
Volume and discretization errors small compared to the uncertainty in the chiral expansion

Nucleon form factors

$G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)-\frac{q^{2}}{(2 m)^{2}} F_{2}\left(q^{2}\right), \quad G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+F_{2}\left(q^{2}\right)$

Results from ETMC (arXiv:0910.3309), LHPC using DWF (S. N. Syritsyn, PRD 81, 034507 (2010)) and a hybrid action (J. D. Bratt et al., arXiv:1001:3620), and from CLS using Clover, (H. Wittig) Can we get results at physical point?

Chiral extrapolation of electromagnetic form factors

Baryon chiral perturbation theory to one-loop, with Δ d.o.f.(SSE) and iso-vector $N \Delta$ coupling included in LO, T. R. Hemmert and W. Weise, Eur. Phys. J. A 15,487 (2002); M. Gockeler et al., PRD 71, 034508 (2005).

Fit $F_{1}\left(m_{\pi}, Q^{2}\right)$ and $F_{2}\left(m_{\pi}, Q^{2}\right)$ with 5 parameters: $\left(\kappa_{v}\right)$, the isovector $\left(c_{V}\right)$ and axial N to $\Delta\left(c_{A}\right)$ couplings and two counterterms

Nucleon momentum fraction

Momentum fraction $\langle x\rangle_{u-d}=A_{20}^{\text {isovector }}$ is calculated similarly to g_{A}

Physical point: $\langle x\rangle_{u-d}$ from S. Alekhin et al. arXiv:0908.2766
$\mathrm{HB} \chi$ PT for $\langle x\rangle_{u-d}$ and $\langle x\rangle_{\Delta u-\Delta d}$, D. Arndt, M. Savage, NPA 697, 429 (2002); W. Detmold, W Melnitchouk, A. Thomas, PRD 66, 054501 (2002)

Fit ETMC results with $\lambda^{2}=1 \mathrm{GeV}^{2}$

$$
\langle x\rangle_{u-d}=C\left[1-\frac{3 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \frac{m_{\pi}^{2}}{\lambda^{2}}\right]+\frac{c_{8}\left(\lambda^{2}\right) m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}} \quad\langle x\rangle_{\Delta u-\Delta d}=\tilde{C}\left[1-\frac{2 g_{A}^{2}+1}{\left(4 \pi f_{\pi}\right)^{2}} m_{\pi}^{2} \ln \frac{m_{\pi}^{2}}{\lambda^{2}}\right]+\frac{\tilde{c_{8}}\left(\lambda^{2}\right) m_{\pi}^{2}}{\left(4 \pi f_{\pi}\right)^{2}}
$$

Nucleon spin

Results using $N_{F}=2$ TMF for $270 \mathrm{MeV}<m_{\pi}<500 \mathrm{MeV}$, C. Alexandrou et al. (ETMC), arXiv:1104.1600 In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

Nucleon spin

Results using $N_{F}=2$ TMF for $270 \mathrm{MeV}<m_{\pi}<500 \mathrm{MeV}$, C. Alexandrou et al. (ETMC), arXiv:1104.1600 In qualitative agreement with J. D. Bratt et al. (LHPC), PRD82 (2010) 094502

\Longrightarrow Total spin for u-quarks $J^{u} \sim 0.25$ and for d-quark $J^{d} \sim 0$

Disconnected contributions neglected

$N \gamma^{*} \rightarrow \Delta$ form factors

- A dominant magnetic dipole, M1
- An electric quadrupole, E2 and a Coulomb, C2 signal a deformation in the nucleon/ Δ
- 1/2-spin particles have vanishing quadrupole moment in the lab-frame
- Probe nucleon shape by studying transitions to its excited Δ-state

- Difficult to measure/calculate since quadrupole amplitudes are sub-dominant

- $R_{E M}(\mathrm{EMR})=-\frac{G_{E 2}\left(Q^{2}\right)}{G_{M 1}\left(Q^{2}\right)}$,
$R_{S M}(\mathrm{CMR})=-\frac{|\vec{q}|}{2 m_{\Delta}} \frac{G_{C 2}\left(Q^{2}\right)}{G_{M 1}\left(Q^{2}\right)}$,
in lab frame of the Δ.
- Precise data strongly "suggesting" deformation in the Nucleon/ Δ
At $Q^{2}=0.126 \mathrm{GeV}^{2}$:
EMR $=\left(-2.00 \pm 0.40_{\text {stat }+ \text { sys }} \pm 0.27_{\text {mod }}\right) \%$, $C M R=\left(-6.27 \pm 0.32_{\text {stat }+ \text { sys }} \pm 0.10_{\text {mod }}\right) \%$
C. N. Papanicolas, Eur. Phys. J. A18 (2003); N. Sparveris et al., PRL 94, 022003 (2005)

Lattice evaluation

$$
\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j_{\mu}|N(p, s)\rangle=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{p})}\right)^{1 / 2} \bar{u}_{\sigma}\left(p^{\prime}, s^{\prime}\right)\left[G_{M 1}^{*}\left(q^{2}\right) K_{\sigma \mu}^{M 1}+G_{E 2}^{*}\left(q^{2}\right) K_{\sigma \mu}^{E 2}+G_{C 2}^{*} K_{\sigma \mu}^{C 2}\right] u(p, s)
$$

- Evaluation of two-point and three-point functions

$$
\begin{aligned}
& G(\vec{q}, t)=\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{q}} \Gamma_{\beta \alpha}^{4}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
& G^{\mu \nu}(\Gamma, \vec{q}, t)=\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{a}} \Gamma_{\beta \alpha}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}^{\mu}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle \\
& R_{\sigma}^{J}\left(t_{2}, t_{1} ; \mathbf{p}^{\prime}, \mathbf{p} ; \Gamma_{\tau} ; \mu\right)=\frac{\left\langle G_{\sigma} \mathcal{G}_{\mu} N\left(t_{2}, t_{1} ; \mathbf{p}^{\prime}, \mathbf{p} ; \Gamma_{\tau}\right)\right\rangle}{\left\langle G_{i i}^{\Delta \Delta}\left(t_{2}, \mathbf{p}^{\prime} ; \Gamma_{4}\right)\right\rangle}\left[\frac{\left\langle G_{i}^{\Delta \Delta}\left(t_{2}, \mathbf{p}^{\prime} ; \Gamma_{4}\right)\right\rangle}{\left\langle G^{N N}\left(t_{2}, \mathbf{p} ; \Gamma_{4}\right)\right\rangle} \frac{\left\langle G^{N N}\left(t_{2}-t_{1}, \mathbf{p} ; \Gamma_{4}\right)\right\rangle\left\langle G_{i j}^{\Delta \Delta}\left(t_{1}, \mathbf{p}^{\prime} ; \Gamma_{4}\right)\right\rangle}{\left\langle G_{i j}^{\Delta \Delta}\left(t_{2}-t_{1}, \mathbf{p}^{\prime} ; \Gamma_{4}\right)\right\rangle\left\langle G^{N N}\left(t_{1}, \mathbf{p} ; \Gamma_{4}\right)\right\rangle}\right]^{1 / 2}
\end{aligned}
$$

- Construct optimized sources to isolate quadrupoles \rightarrow three-sequential inversions needed

$$
\begin{aligned}
& S_{1}^{J}(\mathbf{q} ; J)=\sum_{\sigma=1}^{3} \Pi_{\sigma}^{J}\left(\mathbf{0},-\mathbf{q} ; \Gamma_{4} ; J\right), \quad S_{2}^{J}(\mathbf{q} ; J)=\sum_{\sigma \neq k=1}^{3} \Pi_{\sigma}^{J}\left(\mathbf{0},-\mathbf{q} ; \Gamma_{k} ; J\right) \\
& S_{3}^{J}(\mathbf{q} ; J)=\Pi_{3}^{J}\left(\mathbf{0},-\mathbf{q} ; \Gamma_{3} ; J\right)-\frac{1}{2}\left[\Pi_{1}^{J}\left(\mathbf{0},-\mathbf{q} ; \Gamma_{1} ; J\right)+\Pi_{2}^{J}\left(\mathbf{0},-\mathbf{q} ; \Gamma_{2} ; J\right)\right]
\end{aligned}
$$

- Use the coherent sink technique: create four sets of forward propagators for each configuration at source positions separated in time by one-quarter of the total temporal size, Syritsyn et al. (LHPC), Phys. Rev. D81 (2009) 034507.

Results on magnetic dipole

Results on magnetic dipole

Slope smaller than experiment, underestimate $G_{M 1}^{*}$ at low $Q^{2} \rightarrow$ pion cloud effects?

New results using $N_{f}=2+1$ dynamical Domain Wall Fermions, simulated by RBC-UKQCD Collaborations \Longrightarrow No visible improvement. C. A., G.Koutsou, J.W. Negele, Y. Proestos, A. Tsapalis, Phys. Rev. D83 (2011)

Situation like for nucleon form factors, independent of lattice discretization

Results on EMR and CMR

Systematic errors may cancel in rations: $G_{E 2}$ and $G_{C 2}$ are suppressed at low Q^{2} like $G_{M 1}^{*}$ \Longrightarrow look at EMR and CMR

New results using $N_{f}=2+1$ dynamical domain wall fermions by RBC-UKQCD Collaborations Need large statistics to reduce the errors \Longrightarrow as $m_{\pi} \rightarrow 140 \mathrm{MeV} \mathcal{O}\left(10^{3}\right)$ need to be analyzed.

N to Δ axial-vector and pseudoscalar form factors

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}^{3}|N(p, s)\rangle=\mathcal{A} \bar{u}^{\lambda}\left(p^{\prime}, s^{\prime}\right)\left[\left(\frac{C_{3}^{A}\left(q^{2}\right)}{m_{N}} \gamma^{\nu}+\frac{C_{4}^{A}\left(q^{2}\right)}{m_{N}^{2}} p^{\prime \nu}\right)\left(g_{\lambda \mu} g_{\rho \nu}-g_{\lambda \rho} g_{\mu \nu}\right) q^{\rho}+C_{5}^{A}\left(q^{2}\right) g_{\lambda \mu}+\frac{C_{6}^{A}\left(q^{2}\right)}{m_{N}^{2}} q_{\lambda} q_{\mu}\right] u(p, s)$
$\mathcal{A}=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(\boldsymbol{p}^{\prime}\right) E_{N}(\mathbf{P})}\right)^{1 / 2}$

- $C_{5}^{A}\left(q^{2}\right)$ analogous to the nucleon $G_{A}\left(q^{2}\right)$
- $C_{6}^{A}\left(q^{2}\right)$, analogous to the nucleon $G_{p}\left(q^{2}\right) \longrightarrow$ pion pole behaviour
- $C_{3}^{A}\left(q^{2}\right)$ and $C_{4}^{A}\left(q^{2}\right)$ are suppressed (transverse part of the axial-vector)
- Study also the pseudo-scalar transition form factor $G_{\pi N \Delta}\left(q^{2}\right)$ \Longrightarrow Non-diagonal Goldberger-Treiman relation:

Pion pole dominance relates C_{6}^{A} to $G_{\pi N \Delta}$ through:

Goldberger-Treiman relation becomes

$$
\hat{G}_{\pi N \Delta}\left(q^{2}\right) f_{\pi}=2 m_{N} C_{5}^{A}\left(q^{2}\right)
$$

N to Δ axial-vector and pseudoscalar form factors

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}^{3}|N(p, s)\rangle=\mathcal{A} \bar{u}^{\lambda}\left(p^{\prime}, s^{\prime}\right)\left[\left(\frac{C_{3}^{A}\left(q^{2}\right)}{m_{N}} \gamma^{\nu}+\frac{C_{4}^{A}\left(q^{2}\right)}{m_{N}^{2}} p^{\prime \nu}\right)\left(g_{\lambda \mu} g_{\rho \nu}-g_{\lambda \rho} g_{\mu \nu}\right) q^{\rho}+C_{5}^{A}\left(q^{2}\right) g_{\lambda \mu}+\frac{C_{6}^{A}\left(q^{2}\right)}{m_{N}^{2}} q_{\lambda} q_{\mu}\right] u(p, s)$
$\mathcal{A}=i \sqrt{\frac{2}{3}}\left(\frac{m_{\Delta} m_{N}}{E_{\Delta}\left(\mathbf{p}^{\prime}\right) E_{N}(\mathbf{P})}\right)^{1 / 2}$

- $C_{5}^{A}\left(q^{2}\right)$ analogous to the nucleon $G_{A}\left(q^{2}\right)$
- $C_{6}^{A}\left(q^{2}\right)$, analogous to the nucleon $G_{p}\left(q^{2}\right) \longrightarrow$ pion pole behaviour
- $C_{3}^{A}\left(q^{2}\right)$ and $C_{4}^{A}\left(q^{2}\right)$ are suppressed (transverse part of the axial-vector)
- Study also the pseudo-scalar transition form factor $G_{\pi N \Delta}\left(q^{2}\right)$
\Longrightarrow Non-diagonal Goldberger-Treiman relation:

$$
C_{5}^{A}\left(q^{2}\right)+\frac{q^{2}}{m_{N}^{2}} C_{6}^{A}\left(q^{2}\right)=\frac{1}{2 m_{N}} \frac{G_{\pi N \Delta}\left(q^{2}\right) f_{\pi} m_{\pi}^{2}}{m_{\pi}^{2}-q^{2}}
$$

Pion pole dominance relates C_{6}^{A} to $G_{\pi N \Delta}$ through:

$$
\frac{1}{m_{N}} C_{6}^{A}\left(q^{2}\right) \sim \frac{1}{2} \frac{G_{\pi N \Delta}\left(q^{2}\right) f_{\pi}}{m_{\pi}^{2}-q^{2}}
$$

Goldberger-Treiman relation becomes

$$
G_{\pi N \Delta}\left(q^{2}\right) f_{\pi}=2 m_{N} C_{5}^{A}\left(q^{2}\right)
$$

N to Δ Goldberger-Treiman relation

Pion-pole dominance: $\frac{1}{m_{N}} C_{6}^{A}\left(Q^{2}\right) \sim \frac{1}{2} \frac{G_{\pi N \Delta}\left(Q^{2}\right) f_{\pi}}{m_{\pi}^{2}+Q^{2}} \quad$ Goldberger-Treiman rel.: $G_{\pi N \Delta}\left(Q^{2}\right) f_{\pi}=2 m_{N} C_{5}^{A}\left(Q^{2}\right)$ Similar behavior as in the nucleon system, i.e. between $G_{\pi N N}$ and G_{p}, and $G_{\pi N N}$ and G_{A}.
Ratio: $G_{\pi N \Delta} / G_{\pi N N} \sim 1.6$

Δ electromagnetic form factors

$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| j^{\mu}(0)|\Delta(p, s)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, s^{\prime}\right)\left\{\left[F_{1}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{3}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \gamma^{\mu}+\left[F_{2}^{*}\left(Q^{2}\right) g^{\alpha \beta}+F_{4}^{*}\left(Q^{2}\right) \frac{q^{\alpha} q^{\beta}}{\left(2 M_{\Delta}\right)^{2}}\right] \frac{i \sigma}{2 M_{\Delta}} q_{\nu}\right\} u_{\beta}(p, s)$
with e.g. the quadrupole form factor given by: $G_{E 2}=\left(F_{1}^{*}-\tau F_{2}^{*}\right)-\frac{1}{2}(1+\tau)\left(F_{3}^{*}-\tau F_{4}^{*}\right)$, where $\tau \equiv Q^{2} /\left(4 M_{\Delta}^{2}\right)$
Construct an optimized source to isolate $G_{E 2} \rightarrow$ additional sequential propagators needed.
Neglect disconnected contributions in this evaluation.

Transverse charge density of a Δ polarized along the x-axis can be defined in the infinite momentum frame \rightarrow $\rho_{T \frac{3}{2}}^{\Delta}(\vec{b})$ and $\rho_{T \frac{1}{2}}^{\Delta}(\vec{b})$.
Using $G_{E 2}$ we can predict 'shape' of Δ.

Δ with spin $3 / 2$ projection elongated along spin axis compared to the Ω^{-}

[^0]
Δ axial-vector form factors

Axial-vector current: $A_{\mu}^{a}(x)=\bar{\psi}(x) \gamma_{\mu} \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$
$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| A_{\mu}^{3}(0)|\Delta(p, s)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, s^{\prime}\right) \frac{1}{2}\left[-g^{\alpha \beta}\left(g_{1}\left(q^{2}\right) \gamma^{\mu} \gamma^{5}+g_{3}\left(q^{2}\right) \frac{q^{\mu}}{2 M_{\Delta}} \gamma^{5}\right)+\frac{q^{\alpha} q^{\beta}}{4 M_{\Delta}^{2}}\left(h_{1}\left(q^{2}\right) \gamma^{\mu} \gamma^{5}+h_{3}\left(q^{2}\right) \frac{q^{\mu}}{2 M_{\Delta}} \gamma^{5}\right)\right] u_{\beta}(p, s)$
i.e. 4 axial form-factors, g_{1}, g_{3}, h_{1} and $h_{3} \longrightarrow$ at $q^{2}=0$ we can extract the Δ axial charge

C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

Δ pseudoscalar couplings

Pseudoscalar current: $P^{a}(x)=\bar{\psi}(x) \gamma_{5} \frac{\tau^{a}}{2} \psi(x)$

- $\Delta-\Delta$ matrix element:
$\left\langle\Delta\left(p^{\prime}, s^{\prime}\right)\right| P^{3}(0)|\Delta(p, s)\rangle=-\bar{u}_{\alpha}\left(p^{\prime}, s^{\prime}\right) \frac{1}{2}\left[-g^{\alpha \beta} \tilde{g}\left(q^{2}\right) \gamma^{5}+\frac{q^{\alpha} q^{\beta}}{4 M_{\Delta}^{2}} \tilde{h}\left(q^{2}\right) \gamma^{5}\right] u_{\beta}(p, s)$
i.e. two $\pi \Delta \Delta$ couplings \Longrightarrow two Goldberger-Treiman relations.
- $G_{\pi \Delta \Delta}$ is given by: $m_{q} \tilde{g}\left(Q^{2}\right) \equiv \frac{f_{\pi} m_{\pi}^{2} G_{\pi \Delta \Delta}\left(Q^{2}\right)}{\left(m_{\pi}^{2}+Q^{2}\right)}$ and $H_{\pi \Delta \Delta}$ is given by: $m_{q} \tilde{h}\left(Q^{2}\right) \equiv \frac{f_{\pi} m_{\pi}^{2} H_{\pi \Delta \Delta}\left(Q^{2}\right)}{\left(m_{\pi}^{2}+Q^{2}\right)}$
- Goldberger-Treiman relations: $f_{\pi} G_{\pi \Delta \Delta}\left(Q^{2}\right)=m_{\Delta} g_{1}\left(Q^{2}\right), \quad f_{\pi} H_{\pi \Delta \Delta}\left(Q^{2}\right)=m_{\Delta} h_{1}\left(Q^{2}\right)$

C. A., E. Gregory, T. Korzec, G. Koutsou, J. W. Negele, T. Sato, A. Tsapalis, arXiv:1011.0411

Global chiral fit to the axial couplings

Use heavy baryon $\chi \mathrm{PT}$ to describe the pion mass dependence of the nucleon and Δ axial charge g_{A} and g_{Δ} as well as the N to Δ axial transition C_{5}^{A}.
T. R. Hemmert, M. Procura, W. Weise, PRD68, 075009 (2003); F. J. Jiang and B. C. Tiburzi, PRD 78, 017504 (2008); M. Procura, PRD 78, 094021 (2008).

Conclusions

- Large scale simulations using the underlying theory of the Strong Interactions have made spectacular progress
\Longrightarrow we now have simulations of the full theory at near physical parameters
- The low-lying hadron spectrum is reproduced
- Nucleon form factors are being computed by a number of collaborations aiming at reproducing the experimental values
- N to Δ transition form factors can be extracted in a similar way to the nucleon ones
\rightarrow EMR and CMR allow comparison to experiment
- Δ form factors are predicted
- Resonance width can be computed within Euclidean Lattice QCD as illustrated for the ρ-meson \rightarrow similar techniques can be applied to Δ
\Longrightarrow We expect many physical results using dynamical simulations at physical pion mass in the next few years.

Thank you for your attention

[^0]: C. A., T. Korzec, G. Koutsou, C. Lorcé, J. W. Negele, V. Pascalutsa, A. Tsapalis, M. Vanderhaeghen, NPA825,115 (2009).

