A lattice study of the strangeness content of the nucleon

Gunnar Bali, <u>Sara Collins</u>, Meinulf Göckeler, Roger Horsley, Yoshifumi Nakamura, Andrea Nobile, Dirk Pleiter, Paul Rakow, Andreas Schäfer, Gerrit Schierholz, James Zanotti (QCDSF Collaboration)

q and $g \rightarrow$ hadrons and nuclei

EMFCSC Erice, September 19, 2011

Out	line	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary

- Introduction
- How to compute Δq and $\langle N|\bar{q}q|N
 angle$
- Renormalization and results on $\sigma_{\pi N}$ and f_{T_s}
- Renormalization and results on Δu , Δd and Δs
- Summary

Based on LAT09-10: arXiv:0911.2407, arXiv:1011.2194 LAT11 proceedings and article in preparation. Presentation of final results may differ.

Contribution of the quark spin to the spin of the nucleon.

 $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

Along with the quark angular momentum, L_q , the gluon spin ΔG and angular momentum L_g :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$$

Extraction of $\Delta\Sigma$ from experiment:

- measure the spin structure function $g_1(x, Q^2)$ for neutron, proton.
- extract $\Delta q(x, Q^2)$ from g_1 's and integrate over x:

$$\Delta q(Q^2) = \int_0^1 dx \, \Delta q(x, Q^2) \, .$$

• Assumptions required to extrapolate data to $x < 10^{-3}$, e.g. fixing F/D from assuming SU(3)_F symmetry!

Outline	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary

Hermes 2006 (COMPASS very similar): (at $Q^2 = 5 \,\mathrm{GeV}^2$)

 $\Delta u = 0.842(4)(8)(9)$ $\Delta d = -0.427(4)(8)(9)$ $\Delta s = -0.085(13)(8)(9)$

Errors are (theoretical)(experimental)(evolution). However,

- data only for x > 0.004,
- restrict integration to range where \exists data and new data

 $\Rightarrow \Delta s = 0.037(19)(27)$ at $Q^2 = 2.5 \, {
m GeV}^2$ (HERMES 2008).

- New COMPASS data at smaller x indeed indicate a less negative Δs .
- → F Bradamante, W Vogelsang, E-M Kabuß (Saturday),
 M Burkardt (Sunday), L Glozman (Tuesday), S Ohta (Thursday)

Rotational curves of galaxies, gravitational lensing, flat universe

\implies \exists dark matter R Young (Saturday), C Alexandrou

Gunnar Bali (Regensburg)

The (scheme- and scale-independent) scalar matrix elements $m_q \langle N | \bar{q}q | N \rangle$ determine the coupling strength of the nucleon to the Higgs at zero recoil:

$$\frac{f_N}{m_N} = \sum_{q \in \{u,d,s\}} f_{T_q} \frac{\alpha_q}{m_q} + \frac{2}{9(n_F - 3)} f_{T_G} \sum_{q \in \{c,b,t,\ldots\}} \frac{\alpha_q}{m_q}$$

where the couplings $\alpha_q \propto m_q/m_W$ and cross section $\propto |f_N|^2$.

$$f_{T_q} = rac{m_q \langle N | ar{q} q | N
angle}{m_N}$$

are the contributions of the light quark masses to the proton mass and,

$$f_{\mathcal{T}_G} pprox 1 - \sum_{q \in \{u,d,s\}} f_{\mathcal{T}_q}$$
.

How large is $f_{T_u} + f_{T_d} = \sigma_{\pi N}/m_N$? How much do we know about f_{T_s} ??? Little is known experimentally but \exists assumptions.

0		41	ь.	
U	u	u	ш	e

Lattice QCD

typical values: $a^{-1} = 1.5-4$ GeV, La = 1.5-6 fm continuum limit: $a \rightarrow 0$, La fixed infinite volume: $La \rightarrow \infty$

$$\langle \mathbf{O} \rangle = \frac{1}{Z} \int [dU] \, [d\psi] [d\bar{\psi}] \, \mathbf{O}[U] e^{-S[U,\psi,\bar{\psi}]}$$

"Measurement": average over a *representative* ensemble of gluon configurations $\{U_i\}$ with probability $P(U_i) \propto \int [d\psi] [d\bar{\psi}] e^{-S[U,\psi,\bar{\psi}]}$

$$\langle \mathbf{O} \rangle = \frac{1}{n} \sum_{i=1}^{n} \mathbf{O}(U_i) + \Delta \mathbf{O} \qquad \Delta \mathbf{O} \propto \frac{1}{\sqrt{n}} \xrightarrow{n \to \infty} 0$$

Landscape of current lattice simulations

Gunnar Bali (Regensburg)

Outline	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary
What i	s new?				

- Inclusion of flavour singlet contributions
- Full renormalization of the results
- Improved creation operators, with good ground state overlap
- Improved algorithms
- New computer

0				
	t		0	
<u> </u>				

The power wall

QPACE (QCD Parallel Computing on the Cell BE)

based on Enhanced Cell/BE \in 10/GFlops, 5 W/GFlops (sustained)

$$\langle N, s | \bar{q} \gamma_{\mu} \gamma_{5} q | N, s \rangle = 2 m_{N} s_{\mu} \frac{\Delta q}{2}$$

On the lattice extracted using

For $\Delta s \exists$ only the disconnected contribution.

Outline Introduction Lattice Computation Results: scalar Results: spin Summary

Extract matrix element from ratio (at zero momentum)

$$R^{con}(t, t_{f}) = \frac{\langle \Gamma_{\text{pol}}^{\alpha\beta} C_{3pt}^{\beta\alpha}(t_{0}, t, t_{f}) \rangle}{\langle \Gamma_{\text{unpol}}^{\alpha\beta} C_{2pt}^{\beta\alpha}(t_{0}, t_{f}) \rangle}$$

$$R^{dis}(t, t_{f}) = -\frac{\langle \Gamma_{\text{pol}}^{\alpha\beta} C_{2pt}^{\beta\alpha}(t_{0}, t_{f}) \sum_{\mathbf{x}} \text{Tr}(\gamma_{j}\gamma_{5}M^{-1}(\mathbf{x}, t; \mathbf{x}, t)) \rangle}{\langle \Gamma_{\text{unpol}}^{\alpha\beta} C_{2pt}^{\beta\alpha}(t_{0}, t_{f}) \rangle}$$

• polarized in the *j*-direction.

•
$$\Gamma_{
m pol} = i \gamma_j \gamma_5 (1 + \gamma_4)/2$$
, $\Gamma_{
m unpol} = (1 + \gamma_4)/2$.

• We smear C_{3pt} and C_{2pt} at source and sink.

For $t_f \gg t \gg t_0$:

$$R^{con}(t,t_f)+R^{dis}(t,t_f)
ightarrow 2rac{\langle N,s|(ar q\gamma_j\gamma_5 q)^{lat}|N,s
angle}{2m_N}=\Delta q^{lat}$$

At finite *a* the Wilson action explicitly breaks chiral symmetry. Scalar flavour singlets and non-singlets can renormalize differently. We use $n_F = 2$ mass degenerate electrically neutral sea quarks. Singlet mass from the vector Ward identity (VWI) quark mass:

$$\overline{m} = m^{
m sea} = rac{1}{2a} \left(rac{1}{\kappa_{
m sea}} - rac{1}{\kappa_{
m c,sea}}
ight) \, .$$

Renormalized quark mass,

$$m_q^{\mathrm{ren}}(\mu) = Z_m^s(\mu)\overline{m} + Z_m^{ns}(\mu)(m_q - \overline{m}).$$

$$m^{
m sea,ren}(\mu) = Z^s_m(\mu)m^{
m sea} \ , \ m^{
m sea,ren}(\mu) - m^{
m val,ren}(\mu) = Z^{ns}_m(\mu)(m^{
m sea} - m^{
m val}) \, .$$

Outline Introduction Lattice Computation **Results: scalar** Results: spin Summary

At $\kappa_{\mathrm{val}} = \kappa_{\mathrm{c,val}}$, $m^{\mathrm{val,ren}}$ vanishes and

$$\begin{aligned} \frac{Z_m^s}{Z_m^{ns}} &= \left. \frac{m^{\text{sea}} - m^{\text{val}}}{m^{\text{sea}}} \right|_{\kappa_{\text{val}} = \kappa_{\text{c,val}}} \\ &= \left. \frac{\kappa_{\text{sea}}^{-1} - \kappa_{\text{c,val}}^{-1}}{\kappa_{\text{sea}}^{-1} - \kappa_{\text{c,sea}}^{-1}} =: 1 + \alpha \,. \end{aligned}$$

The non-singlet mass can also be obtained from the axial Ward identity (AWI),

$$rac{Z_{\mathcal{S}}^{ns}}{Z_{\mathcal{P}}^{ns}}Z_{\mathcal{A}}^{ns}m^{\mathrm{AWI}}=rac{1}{2a}\left(rac{1}{\kappa}-rac{1}{\kappa_{\mathrm{c,val}}}
ight)+O(a)\,,$$

where $Z_S Z_A/Z_P = 0.988(31)$ at $\beta = 5.29$ [M Göckeler et al 10]

We do not attempt O(a) improvement. This would involve mixing with $a\langle N|\text{Tr }F_{\mu\nu}F_{\mu\nu}|N\rangle$.

Outline

Outline	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary

$$\begin{pmatrix} m_u(\mu) \\ m_d(\mu) \\ m_s(\mu) \end{pmatrix}^{\text{ren}} = Z_m^{ns}(\mu, a) \begin{pmatrix} 1 + \frac{\alpha(a)}{2} & \frac{\alpha(a)}{2} & 0 \\ \frac{\alpha(a)}{2} & 1 + \frac{\alpha(a)}{2} & 0 \\ \frac{\alpha(a)}{2} & \frac{\alpha(a)}{2} & 1 \end{pmatrix} \begin{pmatrix} m_u(a) \\ m_d(a) \\ m_s(a) \end{pmatrix}^{\text{lat}}$$

Now $m_q^{\text{ren}}(\mu)\langle N|\bar{q}q|N\rangle^{\text{ren}}(\mu)$ are renormalization group invariants, i.e. $\langle N|\bar{q}q|N\rangle^{\text{lat}}(\mu)$ renormalize with the inverse of the above matrix:

$$\frac{m_u^{\rm ren}(\mu) + m_d^{\rm ren}(\mu)}{2} \langle N | \bar{u}u + \bar{d}d | N \rangle^{\rm ren}(\mu) = \frac{m_u^{\rm lat} + m_d^{\rm lat}}{2} \langle N | \bar{u}u + \bar{d}d | N \rangle^{\rm lat}$$

$$\begin{split} \left[m_{s}\langle N|\bar{s}s|N\rangle\right]^{\mathrm{ren}} &= \left[m_{s}^{\mathrm{lat}} + \frac{\alpha}{2}\left(m_{u}^{\mathrm{lat}} + m_{d}^{\mathrm{lat}}\right)\right] \\ &\times \left(\langle N|\bar{s}s|N\rangle^{\mathrm{lat}} - \frac{\alpha}{2(1+\alpha)}\langle N|\bar{u}u + \bar{d}d|N\rangle^{\mathrm{lat}}\right) \end{split}$$

 f_{T_s} receives connected light quark contributions! C.f R Babich et al 10.

Outline

Varying the sink time t_f

 $V = 40^3 64, \ a^{-1} \approx 2.75 \, {
m GeV}$

Unrenormalized lattice results

 $\kappa_{
m sea}=0.13632,\ m_{
m PS}pprox$ 290 MeV, approx 2.75 GeV, $Lam_{
m PS}=$ 3.36, 4.20.

$\kappa_{\rm val}$	$\kappa_{ m cur}$	$m_{ m PS,cur}$	V	$\langle N \bar{q}q N\rangle_{\rm dis}^{\rm lat}$	$\langle N \bar{q}q N angle_{ m con}^{ m lat}$
	0.13550	730 MeV	32 ³ 64	1.93(20)	
			40 ³ 64	2.17(25)	
0.13550	0.13609	460 MeV	32 ³ 64	2.18(22)	
			40 ³ 64	2.43(27)	
	0.13632	290 MeV	32 ³ 64	2.30(23)	
			40 ³ 64	2.55(29)	
	0.13550	730 MeV	32 ³ 64	2.18(22)	
			40 ³ 64	2.06(25)	
0.13609	0.13609	460 MeV	32 ³ 64	2.11(22)	
			40 ³ 64	2.28(26)	
	0.13632	290 MeV	32 ³ 64	2.16(23)	
			40 ³ 64	2.36(28)	
	0.13550	730 MeV	32 ³ 64	1.86(23)	
			40 ³ 64	1.93(27)	
0.13632	0.13609	460 MeV	32 ³ 64	1.93(24)	
			40 ³ 64	2.05(29)	
	0.13632	290 MeV	32 ³ 64	1.62(26)	8.43(73)
			40 ³ 64	1.86(31)	8.35(43)

Outline	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary
The	term				

$$\sigma_{\rm PS\,N} = \begin{cases} 0.0376(39)a^{-1} = 0.263(26)(2)r_0^{-1} \quad (V = 32^364) \\ 0.0389(36)a^{-1} = 0.272(25)(2)r_0^{-1} \quad (V = 40^364) \end{cases},$$

where $r_0^{-1} = 386(20)$ MeV.
To LO χ PT $dm_N/dm_{\rm PS}^2 = \text{const}$ This means that $\sigma_{\rm PS\,N} \propto m_{\rm PS}^2$:

$$\sigma_{\mathrm{PS}\,N} = m_u \frac{\partial m_N}{\partial m_u} + m_d \frac{\partial m_N}{\partial m_d} \approx m_{\mathrm{PS}}^2 \frac{dm_N}{dm_{\mathrm{PS}}^2}.$$

So, naively, at the physical point, $\sigma_{\mathrm{PS}\textit{N}}=25(3)(1)\,\mathrm{MeV}.$ However . . .

Outline

The strangeness contribution f_{T_s}

Outline	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary

However · · ·

$$f_{T_s} = \frac{[m_s \langle N | \bar{s}s | N \rangle]^{\text{ren}}}{m_N} = 0.013(15)(10)$$

This means that $\sigma_s=\mathit{m_Nf_{T_s}}\approx(12\pm17)$ MeV and

$$y = \frac{2\langle N|\bar{s}s|N\rangle^{\text{ren}}}{\langle N|\bar{u}u + \bar{d}d|N\rangle^{\text{ren}}} = \begin{cases} 0.039(37)(29) & (L = 32) \\ 0.041(37)(29) & (L = 40) \end{cases},$$

 χ extrapolation increases the denominator by 1.4 – 1.5. The numerator will increase less (if at all).

 \Rightarrow y < 0.13 with 95 % confidence.

Comparison with $n_F = 2 + 1$

Feynman-Hellmann method: QCDSF: R Horsley et al LAT 11

$$\sigma_{\pi N} = 31(5)(??) \text{ MeV},$$

 $\sigma_s = 91(34)(??) \text{ MeV}.$

BMW-c: A Ramos et al LAT 11

$$egin{split} & \sigma_{\pi N} = 39(4) \left(egin{array}{c} +18 \ -7 \end{array}
ight) \,\, {
m MeV} \,, \ & \sigma_s = 67(27) \left(egin{array}{c} +55 \ -47 \end{array}
ight) \,\, {
m MeV} \,. \end{split}$$

The direct method seems to be more efficient for σ_s . It can also constrain the chiral extrapolation of $\sigma_{\pi N}$. $n_F = 2 + 1$:

$$egin{aligned} &(\Delta u+\Delta d+\Delta s)^{\overline{MS}}(\mu)=Z^s_A(\mu,a)(\Delta u+\Delta d+\Delta s)^{ ext{lat}}(a)\,,\ &(\Delta u+\Delta d-2\Delta s)^{\overline{MS}}=Z^{ns}_A(a)(\Delta u+\Delta d-2\Delta s)^{ ext{lat}}(a)\,,\ &(\Delta u-\Delta d)^{\overline{MS}}=Z^{ns}_A(a)(\Delta u-\Delta d)^{ ext{lat}}(a)\,, \end{aligned}$$

where $z(\mu) = Z_A^s(\mu) - Z_A^{ns}$. $n_F = 2$: $(\Delta u + \Delta d \text{ is now the singlet.})$

$$\begin{pmatrix} \Delta u(\mu) \\ \Delta d(\mu) \\ \Delta s(\mu) \end{pmatrix}^{\overline{MS}} = \begin{pmatrix} Z_A^{ns} + \frac{z(\mu)}{2} & \frac{z(\mu)}{2} & 0 \\ \frac{z(\mu)}{2} & Z_A^{ns} + \frac{z(\mu)}{2} & 0 \\ \frac{z(\mu)}{2} & \frac{z(\mu)}{2} & Z_A^{ns} \end{pmatrix} \begin{pmatrix} \Delta u \\ \Delta d \\ \Delta s \end{pmatrix}^{\text{lat}}$$

$$Z_A^{ns} = 0.76485(64)(73)$$

has been determined non-perturbatively M Göckeler et al 10. Due to the axial anomaly, Z_A^s acquires and anomalous dimension,

$$\gamma_A^s(\alpha_s) = -6C_F n_f \left(\frac{\alpha_s}{4\pi}\right)^2 + \cdots$$

A Skouroupathis, H Panagopoulos 09 have determined,

$$z(\mu) := Z_A^s(\mu) - Z_A^{ns} = C_F n_{\rm f} \left[15.8380(8) - 6\ln(a^2\mu^2) \right] \left(\frac{\alpha_s}{4\pi}\right)^2 + O(\alpha_s^3) \,,$$

for the conversion to the \overline{MS} scheme, where we use,

$$\alpha_s = \frac{g^2}{4\pi} = -\frac{3}{4\pi} \ln \langle U_{\Box} \rangle = 0.14278(5).$$

Outline Introduction Lattice Computation Results: scalar **Results: spin** Summary

O(a) improvement:

$$Z_A^{ns} \mapsto Z_A^{ns}(1 + b_A am),$$

 $z(\mu) \mapsto z(\mu)[1 + (b_A^s - b_A)am],$
 $b_A = b_A^s + O(\alpha_s^2) \approx 1 + C_F \times 18.02539 rac{lpha_s}{4\pi}$

The total correction reads,

$$1 + b_A am = \begin{cases} 1.0324(3)(47) & (m_s, \kappa = 0.13550) \\ 1.0120(3)(17) & (\kappa = 0.13609) \\ 1.0041(3)(5) & (m_u = m_d, \kappa = 0.13632) \end{cases}$$

We allow for a 50 % error on all perturbative results. We obtain $z(\sqrt{7.5} \text{ GeV}) = 0.0055(1)(27)$. (Note that $z(\sqrt{10} \text{ GeV}) = 0.0049(25)$: very slow running with the scale.)

Outline	Introduction	Lattice Computation	Results: scalar	Results: spin	Summary

Varying t_f

Dependence on current and valence quark masses

Outline

Finite volume and valence quark mass effects

Bare lattice results ($\kappa_{\rm val} = \kappa_{\rm sea}$)

q	V	$\Delta q_{ m con}^{ m lat}$	$\Delta q_{ m dis}^{ m lat}$
и		1.065(22)	-0.027(16)
d	32 ³ 64	-0.344(14)	-0.027(16)
S		0	-0.033(12)
и		1.071(15)	-0.049(17)
d	40 ³ 64	-0.369(9)	-0.049(17)
S		0	-0.027(12)

Numbers have to be multiplied by \approx 0.77.

The (renormalized) sea quark contributions are all small (-0.05 to -0.01).

Everything is in the \overline{MS} scheme at $\mu^2 = 7.5 \,\text{GeV}^2$.

q	$\Delta q^{ m ren}$, 32 3	$\Delta q^{ m ren}$, 40 3
и	0.799(21)(2)	0.787(18)(2)
d	-0.283(16)(2)	-0.319(15)(2)
5	-0.024(12)(2)	-0.020(10)(2)

 Δu and Δd are reduced by ≈ 0.03 by the sea quark contributions. Δs in increased by ≈ 0.002 from mixing with light quark flavours.

Note that $g_A = \Delta u - \Delta d \approx 1.1 < 1.27$.

Main systematics: $m_{\rm PS} \approx 2m_{\pi}^{\rm phys}$. No chiral extrapolation! This would probably increase Δu and $|\Delta d|$.

We have directly calculated quark line disconnected contributions to the nucleon structure for $n_F = 2$ improved Wilson sea quarks. Main results:

- $\sigma_{\pi N} = (36 \pm 5)$ MeV, complementing the indirect method.
- $\sigma_s = (12 \pm 17)$ MeV, however no chiral extrapolation.

•
$$\Delta s^{\overline{MS}}(\sqrt{7.5}\,\mathrm{GeV}) = -0.022(11).$$

• Both, the Δs and possibly the $\sigma_{\pi N}$ values indicate substantial $SU(3)_F$ flavour symmetry violations.

Accurate calculations of isosinglet contributions to hadronic structure observables are possible and feasible. Work in progress:

- $n_F = 2 + 1$, lighter quark masses.
- Other disconnected contributions, e.g. to $\langle x \rangle$, δx , G_M , G_E .