

Eta meson production in deuteron proton collisions at COSY-ANKE η^{3} He FSI studies and η mass determination using dp \rightarrow ³He η

Paul Goslawski

Westfälische Wilhelms-Universität Münster for the ANKE collaboration; AG Khoukaz

September 17th, 2011 Erice ISNP 33rd Course $_{/16}$

The dp \rightarrow $^{3}\text{He}\eta$ at ANKE

- Internal fixed target experiment with a cluster-jet target
- ▶ ³He nuclei detected in the Forward-System
- \blacktriangleright Full geometrical acceptance for dp \rightarrow $^{3}He\eta$ up to 20 MeV excess energy

η^3 He final state interaction Is there a quasi bound state?

$\eta^3 He$ final state interaction – quasi bound state? $_{\eta\text{-mesic nucleus}}$

Quasi-bound η -mesic nuclei

Attractive S-wave ηN interaction

R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54 (1985) 685

• Possible formation of η -nucleus bound states

Q. Haider and L.C. Liu, Phys. Lett. B172 (1986) 257

C. Wilkin, Phys. Rev. C47 (1993) 938

η -mesic nuclei program at COSY

- A > 4: GEM (η^6 Li and η^{25} Mg)
- η^4 He: ANKE, GEM, WASA
- ▶ η^3 He: ANKE, COSY-11, GEM, WASA
- $\eta d \& \eta^3 H$: Proposed measurements at ANKE

 $\eta^{3}He$ final state interaction – quasi bound state? FSI - Final State Interaction

Two ways to investigate η -mesic nuclei

- Signal from such a state below the ηA production threshold (WASA-at-COSY, Talk of M. Skurzok, Sunday evening)
- Investigation of the excitation function **above** threshold; A pole close to threshold should influence the ηA production \rightarrow described by a FSI ansatz
- S-wave FSI ansatz for dp \rightarrow $^{3}\text{He}\eta\text{:}$

$$\frac{p_i}{p_f} \cdot \frac{d\sigma}{d\Omega} = |f|^2 = |f_{\text{prod.}} \cdot FSI|^2$$

- Classical description with a and r₀:
- Alternative description with poles:

$$FSI = \frac{1}{1 - i \cdot a \cdot p_f + \frac{1}{2} \cdot a \cdot r_0 \cdot p_f^2}$$
$$FSI = \frac{1}{(1 - p_f/p_1)(1 - p_f/p_2)}$$

with
$$a = -i \cdot \frac{p_1 + p_2}{p_1 \cdot p_2}$$
 and $r_0 = \frac{2 \cdot i}{p_1 + p_2}$

$\eta^{3}He$ final state interaction – quasi bound state? Total cross section of dp \rightarrow $^{3}He\eta$

T. Mersmann et al., Phys. Rev. Lett. 98 (2007) 242301; T. Rausmann et al., Phys. Rev. C80 (2009) 017001.

η^{3} He final state interaction – quasi bound state?

Status and results of the ANKE η^3 He program

- Strong attractive FSI: large |a| and small $|p_1|$
- Fit to the data for Q < 11 MeV: Pole of the scattering amplitude:

$$Q_0 = p_1^2/2m_{
m red} = [(-0.30\pm 0.15~)\pm i\,(0.21\pm 0.29)]\,{
m MeV}$$

Scattering length:

$$\textit{a}(\eta^{3} \text{He}) = [\pm (10.7 \pm 0.8) + \textit{i} (1.5 \pm 2.6)] \, \text{fm}$$

C. Wilkin, Phys. Rev. C47 (1993) 938: $a(\eta^{3}He) = (-2.31 + i2.57)$ fm

Indication for a quasi-bound or virtual state!
 C. Wilkin et al., Phys. Lett. B654 (2007) 92-96;

Further investigations

- Polarized measurement: Verification of FSI
- Other ηN systems: $\eta d \& \eta^3 H$

High precision η mass determination

Current situation on the $\boldsymbol{\eta}$ meson mass

Results of the η mass experiments with uncertainties below 60 keV/c²

Experimental	Mass	Measuring
Facility	$[MeV/c^2]$	Method
SPES-SATURNE	547.300	$dp \to {}^{3}\text{He}\eta$
NA48-SPS	547.843	decay products
GEM-COSY	547.311	pd $ ightarrow$ 3 He η
CLEO-CESR	547.785	decay products
KLOE-DAΦNE	547.873	decay products
CB-MAMI	547.760	photoproduction

Current PDG η mass value: 547.853 \pm 0.024 MeV/c^2

Determination of the $\boldsymbol{\eta}$ mass with a two-body reaction: Kinematics

Two-body reaction:

$$dp \to {}^3\text{He}\eta$$

• Final state momentum of ³He and η

$$p_{f} = \frac{\sqrt{(s - \{m_{3}_{He} + m_{\eta}\}^{2}) \cdot (s - \{m_{3}_{He} - m_{\eta}\}^{2})}}{2\sqrt{s}}$$

• CM-energy depends only on the beam momentum $\vec{p_d}$

$$\sqrt{s} = |P_d + P_p| = \sqrt{2m_p\sqrt{m_d^2 + {\vec{p_d}}^2}} + m_d^2 + m_p^2$$

Determination of the $\boldsymbol{\eta}$ mass with a two-body reaction: Kinematics

Near threshold:

Final state momentum is very sensitive to the η mass!

The goal:

- Accuracy of the η -mass: $\Delta m_{\eta} < 50 \text{ keV}/c^2$
- Final state momentum of the ³He-nuclei: p_f Δp_f = 400 keV/c
- Beam momentum: p_d $\Delta p_d = 300 \text{ keV/c}$

Beam momentum determination

Artificial spin resonance Published in Phys. Rev. ST Accel. Beams 13 (2010) 022803

- Induced by a horizontal magnetic rf-field
- Depolarization of a vertically polarized deuteron beam

Resonance condition:

$$f_r = (1 + \gamma G_d) f_0$$

$$\gamma = \frac{1}{G_d} \left(\frac{f_r}{f_0} - 1 \right)$$

$$p_d = m_d \sqrt{\gamma^2 - 1}$$

$$\boxed{\frac{\Delta p_d}{p_d} < 6 \cdot 10^{-5}}$$
3146.41 ± 0.05 ± 0.17 MeV/c

Final state momentum determination

High precision η mass determination

Final state momentum determination

Using a two body reaction to verify the calibration

Perfect symmetric momentum sphere in p_x, p_y, p_z with radius

 $p_f = \sqrt{p_x^2 + p_y^2 + p_z^2}$

- Deviations of symmetric shape
 improve calibration
- Study cos θ and φ dependency of the final state momentum

$$p_f = p_f(\cos \vartheta)$$
 and $p_f = p_f(\phi)$

 Therefore full geometrical acceptance is needed

Angular dependence of the ³He η final state momentum $p_f = p_f(\cos \vartheta)$ at an excess energy of Q = 1.2 MeV

Influence of different momentum resolutions for p_x , p_y , p_z on p_f

High precision η mass determination Preliminary "final" ANKE-COSY result of the η mass

High precision η mass determination Preliminary "final" ANKE-COSY result of the η mass

Thank you for your attention

