From confinement to new states of dense QCD matter

From Quarks and Gluons to Hadrons and Nuclei, Erice, Sicily, 17 Sept2011

Kurt Langfeld

School of Comp. and Mathematics and The HPCC, Univ. of Plymouth, UK

> Andreas Wipf TPI, University of Jena, Germany

 The empty vacuum of Yang-Mills theory ⇒ centre sectors

- The empty vacuum of Yang-Mills theory \Rightarrow centre sectors
- Yang-Mills theories with matter: Centre sector transitions in QCD-like theories

- The empty vacuum of Yang-Mills theory \Rightarrow centre sectors
- Yang-Mills theories with matter: Centre sector transitions in QCD-like theories
- Lessons from the Schwinger model at finite densities
 What is Fermi Einstein condensation ?

- The empty vacuum of Yang-Mills theory ⇒ centre sectors
- Yang-Mills theories with matter: Centre sector transitions in QCD-like theories
- Lessons from the Schwinger model at finite densities What is Fermi Einstein condensation ?
- SU(3) Fermi gas with confinement and FEC

- The empty vacuum of Yang-Mills theory ⇒ centre sectors
- Yang-Mills theories with matter: Centre sector transitions in QCD-like theories
- Lessons from the Schwinger model at finite densities What is Fermi Einstein condensation ?
- SU(3) Fermi gas with confinement and FEC
- Conclusions

• My name is vacuum - the vacuum: (pert.) vacuum \leftrightarrow all contractible loops are 1

exp $\{i \int A_{\mu} dx^{\mu}\} = 1$ example: $A_{\mu}(x) = 0$ or $U_{\mu}(x) = 1$ more vacua?

• My name is vacuum - the vacuum: (pert.) vacuum \leftrightarrow all contractible loops are 1

Constructing the moduli space
 ⇒ need to "devide out" the gauge transformations
 [Keurentjes, Rosly, Smilga, PRD 58 (1998) 081701]
 [Schaden, PRD 71 (2005) 105012]
 [Langfeld, Lages, Reinhardt, PoS LAT2005:201,2006.]

• There is a $U(1)^{4(N_c-1)}$ manifold of gauge in-equivalent vacua \Rightarrow flat directions

• There is a $U(1)^{4(N_c-1)}$ manifold of gauge in-equivalent vacua \Rightarrow flat directions

 Polyakov line *P* is sensitive to the vacuum ⇒ Litmus paper

• There is a $U(1)^{4(N_c-1)}$ manifold of gauge in-equivalent vacua \Rightarrow flat directions

- Polyakov line *P* is sensitive to the vacuum ⇒ Litmus paper
- none of the vacuum states
 confines quarks
 (trivial potential)

quantum fluctuations lift the flat directions

quantum fluctuations lift the flat directions

• remanent Z_3 symmetry \Rightarrow centre sectors

quantum fluctuations lift the flat directions

- remanent Z_3 symmetry \Rightarrow centre sectors
- confinement phase: centre sector transitions (remarkable entropy !)

quantum fluctuations lift the flat directions

- remanent Z_3 symmetry \Rightarrow centre sectors
- confinement phase: centre sector transitions (remarkable entropy !)
- high temperature phase: frozen centre sector (SSB)
 ⇒ deconfinement

including dynamical matter (e.g. quarks, Higgs, ...)

including dynamical matter (e.g. quarks, Higgs, ...)

 ⇒ bias towards the trivial centre sector

including dynamical matter (e.g. quarks, Higgs, ...)

- ⇒ bias towards the trivial centre sector
- do centre sector transitions still take place ?

including dynamical matter (e.g. quarks, Higgs, ...)

- ⇒ bias towards the trivial centre sector
- do centre sector transitions still take place ?
- quarks are sensitive to the centre sector
 phenomenology of the centre sector transitions?

• Define:

 $\begin{aligned} P_{\boldsymbol{<}} &= \sum_{V_{\boldsymbol{<}}} \ \text{tr} \ \prod_t U_0(x) \\ P_{\boldsymbol{>}} &= \sum_{V_{\boldsymbol{>}}} \ \text{tr} \ \prod_t U_0(x) \end{aligned}$

• Define:

$$\begin{split} P_{\boldsymbol{<}} &= \sum_{V_{\boldsymbol{<}}} \; \text{tr } \prod_t U_0(x) \\ P_{\boldsymbol{>}} &= \sum_{V_{\boldsymbol{>}}} \; \text{tr } \prod_t U_0(x) \end{split}$$

• Center map: C(P) $C = n : P \in \mathbb{C} \to z_n$

• Define:

$$\begin{split} P_{\boldsymbol{<}} &= \sum_{V_{\boldsymbol{<}}} \ \text{tr} \ \prod_t U_0(x) \\ P_{\boldsymbol{>}} &= \sum_{V_{\boldsymbol{>}}} \ \text{tr} \ \prod_t U_0(x) \end{split}$$

• Center map: C(P) $C = n : P \in \mathbb{C} \to z_n$

• Tunneling coefficient:

probability $(C(P_{<}) \text{ and } C(P_{>}))$ are different

• Define:

$$\begin{split} P_{\boldsymbol{<}} &= \sum_{V_{\boldsymbol{<}}} \ \text{tr} \ \prod_t U_0(x) \\ P_{\boldsymbol{>}} &= \sum_{V_{\boldsymbol{>}}} \ \text{tr} \ \prod_t U_0(x) \end{split}$$

• Center map: C(P) $C = n : P \in \mathbb{C} \to z_n$

• Tunneling coefficient:

probability
$$(C(P_{<}) \text{ and } C(P_{>}))$$
 are different

 here: SU(2) Yang-Mills in comparison to SU(2) Yang-Mills + Higgs

tunneling coefficient for SU(2):

$$\begin{array}{c|c|c} C(P_{\boldsymbol{<}}) & -1 & -1 & +1 & +1 \\ \hline C(P_{\boldsymbol{>}}) & -1 & +1 & -1 & +1 \\ \end{array}$$

tunneling $\rightarrow 1/2$ SSB $\rightarrow 0$

• tunneling coefficient for SU(2):

tunneling $\rightarrow 1/2$ SSB $\rightarrow 0$

tunneling coefficient for SU(2):

tunneling $\rightarrow 1/2$ SSB $\rightarrow 0$

phenomenological impact?

From confinement to new states of dense QCD matter - p. 10/24

 U(1) gauge theory massless fermion
 1+1 dimensions, torus

 U(1) gauge theory massless fermion
 1+1 dimensions, torus

• Properties: dynamical generated photon mass: m_{γ} U(1) centre symmetry \Rightarrow $h_0, h_1 \in [0, 1]$ parameterise the centre sectors

 U(1) gauge theory massless fermion
 1+1 dimensions, torus

- Properties: dynamical generated photon mass: m_{γ} U(1) centre symmetry \Rightarrow $h_0, h_1 \in [0, 1]$ parameterise the centre sectors
- physical states: only mesons

 add quark chemical potential μ
 partition function is independent of μ
 silver blaze problem

• partition function factorises:

 $Z(\beta, L, \mu) = (2\pi)^2 \sqrt{\frac{\det'(-\Delta)}{\det'(-\Delta + m_{\gamma}^2)}} \int_0^1 dh_0 \ dh_1 \ \det(\mathrm{i}\partial_{h,\mu}) ,$

• "Frozen" centre sector:

$$\leftarrow \mu/T = 4$$

overlap problem
 for MC simulations

• partition function factorises:

 $Z(\beta, L, \mu) = (2\pi)^2 \sqrt{\frac{\det'(-\Delta)}{\det'(-\Delta + m_{\gamma}^2)}} \int_0^1 dh_0 \ dh_1 \ \det(\mathrm{i}\partial_{h,\mu}) ,$

• "Frozen" centre sector:

$$\leftarrow \mu/T = 4$$

overlap problem
 for MC simulations

• $\rho_B(h_0) \neq 0$

• baryon density: $[z = \exp\{-2\pi i h_0\}]$

$$\rho_B \xrightarrow{L \to \infty} \frac{1}{\pi} \int_0^\infty dp \left\{ \frac{z}{\mathrm{e}^{\beta(p-\mu)} + z} - \frac{z^*}{\mathrm{e}^{\beta(p+\mu)} + z^*} \right\} \,.$$

• baryon density: $[z = \exp\{-2\pi i h_0\}]$

$$\rho_B \xrightarrow{L \to \infty} \frac{1}{\pi} \int_0^\infty dp \left\{ \frac{z}{\mathrm{e}^{\beta(p-\mu)} + z} - \frac{z^*}{\mathrm{e}^{\beta(p+\mu)} + z^*} \right\} \,.$$

• with centre sector transitions: (integrate over h_0, h_1)

$$Z(\beta, L, \mu) = \sqrt{\frac{V}{2}} \frac{1}{\sqrt{\det'(-\triangle + m_{\gamma}^2)}}$$

• baryon density: $[z = \exp\{-2\pi i h_0\}]$

$$\rho_B \xrightarrow{L \to \infty} \frac{1}{\pi} \int_0^\infty dp \left\{ \frac{z}{\mathrm{e}^{\beta(p-\mu)} + z} - \frac{z^*}{\mathrm{e}^{\beta(p+\mu)} + z^*} \right\} \,.$$

• with centre sector transitions: (integrate over h_0, h_1)

$$Z(\beta, L, \mu) = \sqrt{\frac{V}{2}} \frac{1}{\sqrt{\det'(-\Delta + m_{\gamma}^2)}}$$
.

• µ independent!

solves the silver blaze problem

[K. Langfeld, A. Wipf, arXiv:1109.0502]

What is Fermi Einstein condensation?

What is Fermi Einstein condensation?

• Schwinger model: $h_0 = 1/2 \Rightarrow z = \exp\{-2\pi i h_0\} = -1$

$$\rho_B \xrightarrow{L \to \infty} \frac{1}{\pi} \int_0^\infty dp \left\{ \frac{z}{\mathrm{e}^{\beta(p-\mu)} + z} - \frac{z^*}{\mathrm{e}^{\beta(p+\mu)} + z^*} \right\} \,.$$

quarks acquire Bose statistics!

What is Fermi Einstein condensation?

• Schwinger model: $h_0 = 1/2 \Rightarrow z = \exp\{-2\pi i h_0\} = -1$

$$\rho_B \xrightarrow{L \to \infty} \frac{1}{\pi} \int_0^\infty dp \left\{ \frac{z}{\mathrm{e}^{\beta(p-\mu)} + z} - \frac{z^*}{\mathrm{e}^{\beta(p+\mu)} + z^*} \right\} \,.$$

quarks acquire Bose statistics!

• generic for $SU(N_c)$ (at least for N_c even)! [K. Langfeld, A. Wipf, PRD 81 (2010) 114502

• Consider now SU(3) with matter:

Roberge-Weisz transformation

• Consider now SU(3) with matter:

Roberge-Weisz transformation

• $SU(N_c \text{ even}): Z = -1$

after RW-transformation: quarks obey Bose statistics!

• $SU(N_c \text{ even}): Z = -1$

after RW-transformation: quarks obey Bose statistics!

• centre-dressed quarks can condense:

 $\mathsf{BEC}\leftrightarrow\mathsf{Fermi}\ \mathsf{Einstein}\ \mathsf{condensation}$

does *not* contradict the Spin-Statistics theorem: since quarks are confined

• $SU(N_c \text{ even}): Z = -1$

after RW-transformation: quarks obey Bose statistics!

• centre-dressed quarks can condense:

 $\mathsf{BEC} \leftrightarrow \mathsf{Fermi} \ \mathsf{Einstein} \ \mathsf{condensation}$

does *not* contradict the Spin-Statistics theorem: since quarks are confined

• quark-gluon-plasma phase:

spontaneous breaking of centre symmetry

Z = -1 sector does not occur \Rightarrow Fermi statistics only

[K. Langfeld, A. Wipf, PRD 81 (2010) 114502]

• FEC in SU(3) QCD-like theories ? $\Rightarrow q(x+L) = [1/2 \pm i\sqrt{3}/2] q(x)$

- FEC in SU(3) QCD-like theories ?
 - \Rightarrow $q(x+L) = [1/2 \pm i\sqrt{3}/2] q(x)$
- minimalistic model: quarks with mass m interacting with the centre background fields

• FEC in SU(3) QCD-like theories ?

 $\Rightarrow \quad q(x+L) = [1/2 \pm i\sqrt{3}/2] q(x)$

- minimalistic model: quarks with mass m interacting with the centre background fields
- no coloured states contributing to the partition function \rightarrow only mesons, baryons, ...

called confinement in the title, but ...

- ightarrow no confinement scale from the gluon sector ($\sigma=0$)
- \rightarrow more realistic \Rightarrow vortex background field

• FEC in SU(3) QCD-like theories ?

 $\Rightarrow \quad q(x+L) = [1/2 \pm i\sqrt{3}/2] q(x)$

- minimalistic model: quarks with mass m interacting with the centre background fields
- no coloured states contributing to the partition function \rightarrow only mesons, baryons, ...

called confinement in the title, but ...

ightarrow no confinement scale from the gluon sector ($\sigma=0$)

 \rightarrow more realistic \Rightarrow vortex background field

• consider extreme conditions: here T and/or μ \rightarrow centre sector freeze out \Rightarrow Fermi gas model

• Model partition function:

$$Z_Q = \sum_{n=1}^{N_c} \int \mathcal{D}q \mathcal{D}\bar{q} \exp\left\{\bar{q}\left(\mathrm{i}\partial + (A_0^{(n)} + \mathrm{i}\mu)\gamma^0 + \mathrm{i}m\right)q\right\}$$

Model partition function:

$$Z_Q = \sum_{n=1}^{N_c} \int \mathcal{D}q \mathcal{D}\bar{q} \exp\left\{\bar{q}\left(\mathrm{i}\partial + (A_0^{(n)} + \mathrm{i}\mu)\gamma^0 + \mathrm{i}m\right)q\right\}$$

• Thermal energy density:

$$E_{\text{therm}}(T) = \sum_{n} \omega_{n} \sum_{p} E(p)$$
$$\left[\frac{z_{n}^{*}}{e^{\beta E(p)} + z_{n}^{*}} + \frac{z_{n}}{e^{\beta E(p)} + z_{n}}\right] .$$

if $\omega_{1,2} = 0, \ \omega_3 = 1,$ \Rightarrow Fermi-gas model

0.8 $\epsilon_{\mathrm{FEC}}^{0.0}/\epsilon_{\mathrm{free}}^{0.0}$ ω_{12} mL=15 ω_2 mL=15 $\omega_{1,2}$ mL=5 ω_{3} mL=5 0.2 mL = 5mL = 10mL = 150 0 0.2 0.3 0.1 0.4 0.5 0.6 0.2 0.3 0.7 0.1 0.5 0.6 0 0 0.4 T/m T/m

From confinement to new states of dense QCD matter - p. 19/24

• Baryon density:

• Baryon density:

• transition to Fermi gas at μ_c

• Baryon density:

- transition to Fermi gas at μ_c
- excess of density close to $\mu_c \Rightarrow FEC$

• $\mu - T$ phase diagram: large volumes: mL = 15

• $\mu - T$ phase diagram: small volumes: mL = 5

• $\mu - T$ phase diagram: small volumes: mL = 5

• Centre sector transition do take place depsite of the presence of matter unless at extreme conditions

- Centre sector transition do take place depsite of the presence of matter unless at extreme conditions
- Schwinger model:

centre transitions solve the Silver Blaze Problem

- Centre sector transition do take place depsite of the presence of matter unless at extreme conditions
- Schwinger model:

centre transitions solve the Silver Blaze Problem

 Fermi Einstein condensation: centre dressed quarks acquire Bose-type statistics condensation: BEC ↔ FEC (confinement phase only)

 SU(3) Fermi-gas model with confinement: confinement: → absence of coloured states → does not explain confinement scale

- SU(3) Fermi-gas model with confinement: confinement: → absence of coloured states → does not explain confinement scale
- FEC does take place though small volumes (pressure) are needed

[K. Langfeld, A. Wipf, arXiv:1109.0502]

- SU(3) Fermi-gas model with confinement: confinement: → absence of coloured states → does not explain confinement scale
- FEC does take place though small volumes (pressure) are needed
 [K. Langfeld, A. Wipf, arXiv:1109.0502]

• outlook:

more realistic QM:

including chiral SSB, pions,...

centre sectors \leftrightarrow volumes spanning centre vortices

 $\mathsf{FEC} \leftrightarrow \mathsf{statistical} \ \mathsf{model}?$

