INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 33rd Course

RECENT DEVELOPMENTS IN
 NJL-JET MODEL: TMD

Hrayr Matevosyan
CSSM

Collaborators:
A.W.Thomas, W. Bentz \& I.Cloet

ERICE 20|I - Sicilia: September |6-24, 20 II

OUTLOOK

- Motivation
- Short Overview of the NJL-jet model and Monte-Carlo approach:
- Strange quark and Kaons, Vector mesons, NucleonAntinucleon channels, secondary hadrons from the decays of resonances.
- Transverse Momentum Dependent FF, Hadron TM in SIDIS.
- Future Plans.

EXPLORING HADRON STRUCTURE

 A. Kotzinian, Nucl. Phys. B44 I, 234 (I 995).- Semi-inclusive deep inelastic scattering (SIDIS): e $N \rightarrow$ e h X
- Cross-section factorizes into parton distribution and fragmentation functions.

Access to hadron structure:

- Ex., unpolarized cross section is ~

$$
\sum_{q} e_{q}^{2} \int d^{2} \mathbf{k}_{T} f_{1}^{q}\left(x, k_{T}^{2}\right) \pi y^{2} \frac{\hat{s}^{2}+\hat{u}^{2}}{Q^{4}} D_{q}^{h}\left(z, p_{\perp}^{2}\right)
$$

- NJL provides a sound framework for calculating both!

MOTIVATION

- Providing guidance based on a sophisticated model for applications to problems where phenomenology is difficult/ inadequate.
- Unfavored fragmentation functions from the model that goes beyond a single hadron emission approximation.
- Automatically satisfies the sum rules (at the model scale).
- Transverse-momentum dependent (TMD) fragmentations in the same model where structure functions (both unpolarized and polarized) were calculated.

THE QUARK JET MODEL

Field, Feynman.Nucl.Phys.BI36:I, I 978.

Assumptions:

- Number Density interpretation

- No re-absorption
e ∞ hadron emissions

The probability of finding mesons m with mom. fraction
z in a jet of quark q

$D^{m}(z)$

NAMBU--JONA-LASINIO MODEL

Effective Quark model of QCD

-Effective Quark Lagrangian $\mathcal{L}_{N J L}=\bar{\psi}_{q}\left(i \not \partial-m_{q}\right) \psi_{q}+G\left(\bar{\psi}_{q} \Gamma \psi_{q}\right)^{2}$

- Only 4-point interactions.
- Covariant, has the same flavor symmetries as QCD.
- Dynamically Generated Quark Mass from GAP Eqn.
- Lepage-Brodsky (LB)Invariant Mass Cutoff Regularization

$$
M_{12} \leq \Lambda_{12} \equiv \sqrt{\Lambda_{3}^{2}+M_{1}^{2}}+\sqrt{\Lambda_{3}^{2}+M_{2}^{2}}
$$

- No ad-hoc parameters: Taking Λ_{3} and M_{u} as input, all masses and couplings fixed reproducing

NJL-JET: ELEMENTARY SPLITTINGS

- One-quark truncation of the wavefunction:

$$
\begin{aligned}
& d_{q}^{m}(z): q \rightarrow Q m \\
& m=q \bar{Q} \quad z=p_{-} / k_{-}
\end{aligned}
$$

$$
d_{q}^{h}(z)=\frac{1}{6} d p_{-} \int d^{2} p_{\perp} \sum_{\alpha} \frac{\langle k(\alpha)| a_{h}^{\dagger}(p) a_{h}(p)|k(\alpha)\rangle}{\langle k(\alpha) \mid k(\alpha)\rangle}
$$

$$
u \rightarrow d \pi^{+}
$$

$$
u \rightarrow s k^{+}
$$

SOLUTIONS OFTHE INTEGRAL EQUATIONS

π^{+}

MONTE-CARLO (MC) APPROACH

- Simulate decay chains to extract number densities.
- Allows for inclusion of TMD and experimental cut-offs.
- Numerically trivially parallelizeable (MPI, GPGPU).

FRAGMENTATIONS FROM MC

 STARTING WITH PIONS- Assume Cascade process:

$$
\left.D_{q}^{h}(z) \Delta z=\left\langle N_{q}^{h}(z, z+\Delta z)\right\rangle \equiv \frac{\sum_{N_{\text {sims }}} N_{q}^{h}(z, z+\Delta z)}{N_{\text {Sims }}}\right)
$$

- Sample the emitted hadron according to splitting weight.
- Randomly sample z from input splittings.
- Evolve to sufficiently large number of decay links.
- Repeat for decay chains with the same initial quark.

Results with vector mesons, N-Nbar: $Q^{2}=4 \mathrm{GeV}^{2}$

Favored

z

Unfavored

INCLUDING THE TRANSVERSE MOMENTUM

- TMD splittings: $d\left(z, p_{\perp}^{2}\right)$
- Conserve transverse momenta at each link.
$\mathbf{P}_{\perp}=\mathbf{p}_{\perp}+z \mathbf{k}_{\perp}$
$\mathbf{k}_{\perp}=\mathbf{P}_{\perp}+\mathbf{k}_{\perp}^{\prime}$

- Calculate the Number Density

$$
D_{q}^{h}\left(z, P_{\perp}^{2}\right) \Delta z \pi \Delta P_{\perp}^{2}=\frac{\sum_{N_{\text {Sims }}} N_{q}^{h}\left(z, z+\Delta z, P_{\perp}^{2}, P_{\perp}^{2}+\Delta P_{\perp}^{2}\right)}{N_{\text {Sims }}} .
$$

TMD SPLITTING FUNCTIONS

- TMD splittings from the NJL model
- Use dipole cutoff function with LB regularizations

$$
\left\langle P_{\perp}^{2}\right\rangle \equiv \frac{\int d^{2} \mathbf{P}_{\perp} P_{\perp}^{2} D\left(z, P_{\perp}^{2}\right)}{\int d^{2} \mathbf{P}_{\perp} D\left(z, P_{\perp}^{2}\right)}
$$

$u \rightarrow \kappa^{*}$

TMD FRAGMENTATION FUNCTIONS

- FAVORED

TMD FRAGMENTATION FUNCTIONS

- UNFAVORED

AVERAGE TRANSVERSE MOMENTA VS Z

- The average transverse momenta of kaons are larger than those of pions.
- Relatively flat in mid-z region.

COMPARISON WITH GAUSSIAN ANSATZ

- Gaussian ansatz assumes: $\quad D\left(z, P_{\perp}^{2}\right)=D(z) \frac{e^{-P_{\perp}^{2} /\left\langle P_{\perp}^{2}\right\rangle}}{\pi\left\langle P_{\perp}^{2}\right\rangle}$
- Unfavored fragmentation in low-z region agrees well with Gaussian.

THE TRANSVERSE MOMENTA OF HADRONS IN SIDIS

- Use TMD quark distribution functions calculated in the NJL model.
- Transfer of the transverse momentum: $\mathbf{P}_{\mathbf{T}}=\mathbf{P}_{\perp}+z \mathbf{k}_{\mathbf{T}}$
- Evaluate $\left\langle P_{T}^{2}\right\rangle$ using MC simulations to calculate the number densities

AVERAGE TRANSVERSE MOMENTA

$$
\left\langle k_{T}^{2}\right\rangle \equiv \frac{\int d^{2} \mathbf{k}_{\mathbf{T}} k_{T}^{2} f\left(x, k_{T}^{2}\right)}{\int d^{2} \mathbf{k}_{\mathbf{T}} f\left(x, k_{T}^{2}\right)} \quad\left\langle P_{\perp}^{2}\right\rangle \equiv \frac{\int d^{2} \mathbf{P}_{\perp} P_{\perp}^{2} D\left(z, P_{\perp}^{2}\right)}{\int d^{2} \mathbf{P}_{\perp} D\left(z, P_{\perp}^{2}\right)}
$$

$$
\begin{equation*}
\left\langle\mathbf{P}_{h \perp}^{2}(z)\right\rangle \text { in } \mathbf{G e V}^{2} \tag{b}
\end{equation*}
$$

P.Schweitzer et al., Phys.Rev. D8I, 094019 (2010).

Using Gaussian Ansatz and:

$$
\left\langle P_{T}^{2}\right\rangle=\left\langle P_{\perp}^{2}\right\rangle+z^{2}\left\langle k_{T}\right\rangle
$$

$$
\begin{aligned}
& \left\langle k_{T}^{2}\right\rangle=(0.38 \pm 0.06) \mathrm{GeV}^{2} \\
& \left\langle P_{\perp}^{2}\right\rangle=(0.16 \pm 0.01) \mathrm{GeV}^{2}
\end{aligned}
$$

AVERAGE TRANSVERSE MOMENTA

Input: $\quad \mathbf{P}_{\mathbf{T}}=\mathbf{P}_{\perp}+z \mathbf{k}_{\mathbf{T}}$
Output: $\left\langle P_{T}^{2}\right\rangle=\left\langle P_{\perp}^{2}\right\rangle+z^{2}\left\langle k_{T}\right\rangle$

AVERAGE TRANSVERSE MOMENTA

Input: $\quad \mathbf{P}_{\mathbf{T}}=\mathbf{P}_{\perp}+z \mathbf{k}_{\mathbf{T}}$
Output: $\left\langle P_{T}^{2}\right\rangle=\left\langle P_{\perp}^{2}\right\rangle+z^{2}\left\langle k_{T}\right\rangle$

NAIVE COMPARISON WITH EXPERIMENT

A. Airapetian et al. (HERMES Collaboration), Phys.Lett. B684, II 4 (20|0). D target, Integration over Q^{2} and x.

SUMMARY

『2009

Ito et al. Phys.Rev.D80:074008,2009

Matevosyan et al.
Phys.Rev.D83:074003, 20 II
Matevosyan et al.
Phys.Rev.D83:|l40I0, 2011

Coming Soon!

口20112012

