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OUTLOOK

• Motivation

• Short Overview of the NJL-jet model and Monte-Carlo 
approach:

• Strange quark and Kaons, Vector mesons, Nucleon-
Antinucleon channels, secondary hadrons from the decays of 
resonances.

•  Transverse Momentum Dependent FF, Hadron TM in SIDIS.

• Future Plans.



• Semi-inclusive deep inelastic scattering (SIDIS): 

• Cross-section factorizes into parton
 distribution and fragmentation
 functions.

Access to hadron structure:

• Ex., unpolarized cross section is ~

• NJL provides a sound framework for calculating both!

EXPLORING HADRON STRUCTURE
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A. Kotzinian, Nucl. Phys. B441, 234 (1995).
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2

Q

4
D

h
q (z, p

2
?)



MOTIVATION
• Providing guidance based on a sophisticated model for 

applications to problems where phenomenology is difficult/
inadequate.

• Unfavored fragmentation functions from the model that goes 
beyond a single hadron emission approximation.

• Automatically satisfies the sum rules (at the model scale).

• Transverse-momentum dependent (TMD) fragmentations in 
the same model where  structure functions (both unpolarized 
and polarized) were calculated. 



Probability of Momentum fraction
 y is transferred to jet at step 1

The probability scales 
with mom. fraction

The probability of finding 
mesons m with mom. fraction 

z in a jet of quark q

Probability of emitting the meson 
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 THE QUARK JET MODEL

q Q Q’ Q’’

Field, Feynman.Nucl.Phys.B136:1,1978.

Assumptions:

• Number Density 
interpretation

• No re-absorption

• ∞ hadron emissions



NAMBU--JONA-LASINIO MODEL 

•Effective Quark Lagrangian

G
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•Lepage-Brodsky (LB)Invariant Mass Cutoff Regularization

Effective Quark model of QCD
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Here Tr denotes the Dirac-trace and the subscripts on the quark propagators denote quarks of di↵erent flavor - also
indicated by q and Q, where the meson of type m under consideration has the flavor structure m = qQ. We evaluate
Eq. (1) in light-cone (LC) coordinates1, noting:
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Thus for the quark-meson coupling we obtain:
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The integrals in the above expressions are divergent and require regularization. Here we use the Lepage-Brodsky
(LB) “invariant mass” cut-o↵ regularization (see Refs. [19, 23] for a detailed description as applied to the NJL-Jet
model), where ⇤12 is the maximum invariant mass of the two particles in the loop:
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where ⇤3 denotes the 3-momentum cuto↵, which is fixed in the usual way by reproducing the experimental pion decay
constant. We use the value obtained in the Ref. [23] of ⇤3 = 0.67 GeV.

Thus from the requirement of k2? � 0 we obtain the region of x where the integrand is non-zero.
Using the light constituent quark mass M = 0.3 GeV from the Ref. [23] and the experimental value of kaon mass

mK = 0.495 GeV yields a strange constituent quark massMs = 0.537 GeV and the corresponding quark-kaon coupling
constant of gKqQ = 3.39.

B. Quark Distribution and Fragmentation Functions

The quark distribution function f

h
q (x) has an interpretation as the probability to find a quark of type q with

momentum fraction x in the hadron (in our case meson) h. The corresponding cut diagram is shown in Fig. 1a, which
can be equivalently represented by the Feynman diagram depicted in Fig. 1b:

1 We use the following LC convention for Lorentz 4-vectors (a+, a�,a?), a± = 1p
2
(a0 ± a3) and a? = (a1, a2).

•Only 4-point interactions.

•No ad-hoc parameters:  Taking        and        as input,  all masses and couplings fixed reproducing 

hadronic properties.  
⇤3 Mu

•Covariant, has the same flavor symmetries as QCD.

•Dynamically Generated Quark Mass from GAP Eqn.



NJL-JET: ELEMENTARY SPLITTINGS
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• One-quark truncation of the wavefunction:
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SOLUTIONS OF THE 
INTEGRAL EQUATIONS
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• Simulate decay chains to extract number densities.

• Allows for inclusion of  TMD and experimental cut-offs. 

• Numerically trivially parallelizeable (MPI, GPGPU).

MONTE-CARLO (MC) APPROACH
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FRAGMENTATIONS FROM MC
STARTING WITH  PIONS

• Assume Cascade process:

• Sample the emitted hadron 
according to splitting weight. 

• Randomly sample z from input 
splittings.

• Evolve to sufficiently large number 
of decay links.

• Repeat for decay chains with the 
same initial quark.
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Results with vector mesons, N-Nbar:

Favored Unfavored
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• TMD splittings: 

• Conserve transverse momenta at each link.

• Calculate the Number Density

INCLUDING THE TRANSVERSE MOMENTUM
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TMD SPLITTING FUNCTIONS

• TMD splittings from 
the NJL model

• Use dipole cutoff 
function with LB 
regularizations

hP 2
?i ⌘

R
d2P? P 2

?D(z, P 2
?)R

d2P? D(z, P 2
?)



TMD FRAGMENTATION FUNCTIONS

• FAVORED



TMD FRAGMENTATION FUNCTIONS

• UNFAVORED



AVERAGE  TRANSVERSE MOMENTA VS Z

• The average transverse momenta of kaons are larger than those of pions.

• Relatively flat in mid-z region.
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COMPARISON WITH GAUSSIAN ANSATZ

• Gaussian ansatz assumes:

• Unfavored fragmentation in low-z region agrees well with 
Gaussian.
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THE TRANSVERSE MOMENTA OF 
HADRONS IN SIDIS

• Use TMD quark distribution functions calculated in the NJL 
model .

• Transfer of the transverse momentum:

• Evaluate          using MC simulations to calculate the number 
densities
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AVERAGE TRANSVERSE MOMENTA 
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Using Gaussian Ansatz and:

P. Schweitzer et al.,  Phys.Rev. D81, 094019 (2010).
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with a !2 per degree of freedom of 0.44, and is shown in
Fig. 3(b) as (respectively) dotted line and shaded region.
The new values in (9) are in agreement with the results
from [29,30] quoted in (3), recalling that those numbers
have unestimated systematic uncertainties.
Finally, we turn back to the CLAS data [12] on hP2

h?ðzÞi
taken at hQ2i similar to HERMES but higher hxi ¼ 0:27.
Because of the reservations discussed in Sec. II A, we
refrain from using these data to determine the Gauss model
parameters. But it is instructive to compare the fit result
obtained from HERMES to the CLAS data; see Fig. 3(c).
Clearly, in the region above z > 0:4 where current frag-
mentation dominates at CLAS, we observe a good agree-
ment [17]. This indicates that it is the same nonperturbative
mechanism which generates intrinsic transverse momenta
in the two experiments.

C. Cahn effect at EMC

In unpolarized SIDIS the cross section differential in the
azimuthal angle " of the produced hadrons (around the
z-axis defined by the virtual photon counted from the
scattered lepton) contains a cos"- and a
cosð2"Þ-modulation. The coefficients of these modulations

define the azimuthal asymmetries Acos"
UU and Acos2"

UU [32].

At low Ph?, the observable A
cos"
UU is suppressed by 1=Q,

and factorization in not proven at twist-3 [31,33]. It was
shown that intrinsic transverse parton momenta in the
unpolarized distribution and fragmentation functions can
generate such a modulation (‘‘Cahn effect’’) [34]. Later it
became clear that, if one assumes factorization and works
at ‘‘tree-level,’’ there are further contributions to this asym-
metry, see the review [32].

The ‘‘Cahn-effect-only’’ approximations of Acos"
UU [34]

can be ‘‘rederived’’ from the TMD formalism assuming
that contributions from quark-gluon quark correlators are
small compared to quark-quark terms (see also [35–37]),
and that a contribution from the Collins effect can be
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FIG. 2 (color online). d5#=d!dEdzdP2
h? for $# production

off proton and deuterium targets at hxi ¼ 0:32 and hzi ¼ 0:55 as
function of P2

h? from Hall-C [13]. The theoretical curves are
from the Gauss model with the Gauss width fixed from CLAS
[12]. The overall normalization of the cross sections is fixed by
hand.
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AVERAGE TRANSVERSE MOMENTA 
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AVERAGE TRANSVERSE MOMENTA 
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NAIVE COMPARISON WITH EXPERIMENT

A. Airapetian et al. (HERMES Collaboration), Phys.Lett. B684, 114 (2010).
D target, Integration over     and    .Q2
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SUMMARY
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