

COMPASS future: COMPASS II

Elena Rocco CERN

From Quarks and Gluons to Hadrons and Nuclei 16-24 September 2011 – Erice, Sicily

COMPASS: COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Current COMPASS Physics Program

Spin decomposition:

$$\frac{1}{2} = \Delta \Sigma + \Delta G + L_{q+g}$$

with $\Delta \Sigma = \Delta u + \Delta d + \Delta s$ (EMC 1988 spin crisis)

Physics with polarised μ^+ (@160GeV/c) on ⁶LiD and NH₃ with transversal or longitudinal target polarisation.

- Helicity PDF from double polarised DIS and flavor separation (see Kabuss's talk);
- Gluon polarisation $\Delta G/G$;
- Transversity PDF in transversely polarised SIDIS.(see Bradamante's talk)

Physics with unpolarised hadron beams (@190GeV/c) on: liquid H_2 , Pb, Ni, Cu and W targets.

- Hadron spectroscopy: search for exotic, hybrids and glueballs;
- Pion polarisabilities

COMPASS FUTURE:

The COMPASS spectrometer versatility allows to measure:

- Generalasided Parton Distributions (GPDs) through Deep Virtual Compton Scattering (DVCS) and Deep Vector Meson Production (DPVM);
- Unpolarised Parton Distribution Functions (PDFs) and Transverse Momentum Dependent (TMD) effects in Semi Inclusive Deep Inelastic Scattering (SIDIS) (here not presented)
- Polarised Drell-Yan (DY) process;
- Primakoff process;

COMPASS II proposal approved by CERN Research Board on 1st December 2010. It is long plan term plan for at least 5 years starting in 2012

From PDFs to GPDs:

Deep Inelastic Scattering

Deeply Virtual Compton Scattering

Deep Virtual Compton Scattering:

GPDs can be accessed from the hard exclusive DVCS processes

Polarised muon beam with unpolarised target: GPD H $d\sigma_{(up \to up\gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu}d\sigma^{DVCS}_{pol} \quad d\sigma$

 $+ e_{\mu}a^{BH}\operatorname{Re}(I) + e_{\mu}P_{\mu}\operatorname{Im}(I)$

 $d\sigma^{^{BH}}$: well known

I : interference term

Elena Rocco/CERN

DVCS @ COMPASS: setup

- 2.5 m long LH₂ target
- 2 barrels 4m long, long scintillators
- \sim 300 ps timing resolution
- GANDALF project: 1 GHz digitisation PM signal
- ECAL1 and ECAL2 upgrade

 $2.20\,\mathrm{m}$

New ECALO large angle calorimeter Multipixel Avalanche Photodiode Redaout

9

Access to GPD H

* Beam Charge and Spin Sum

$$S_{CS,U} = d\sigma^{+\leftarrow} + d\sigma^{-\rightarrow} \propto \text{Im}(F_1, H)$$

* Beam Charge and Spin difference

The BH process is independent of the beam charge and polarisation

$$D_{CS,U} = d\sigma^{+\leftarrow} - d\sigma^{-\rightarrow} \propto \operatorname{Re}(F_1, H)$$

Beam charge and spin difference D_{CS,U}

11

Transverse imaging

btransverse b = impact parameter

$$r_{\perp} = \frac{b}{(1-x)}$$

 r_{\perp} = distance between struck parton and centre of momentum

> t-slope parameter $B(x_B)$ exclusive cross-section

B (x_B) can be extracted without any models $\langle r_{\perp}^2(x_B) \rangle \approx 2 \cdot B(x_B)$

the transverse size of the nucleon

TMD parton distribution

- 8 intrinsic transverse momentum dependent PDFs at LO
- Asymmetries with different angular dependences on hadron and spin azimuthal angles, $\Phi_{\rm h}$ and $\Phi_{\rm s}$
- All measured in COMPASS on ⁶LiD and NH₃

From Semi Inclusive DIS to Drell-Yan

The spin asymmetry is proportional to PDF ⊗ FF ↓

The spin asymmetry is proportional to $PDF \otimes PDF$ \blacksquare A_{Sivers}

Elena Rocco/CERN

Drell-Yan process and its angular distribution

Quark-anti-quark annihilation with dilepton production

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi(\lambda+3)} \left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi \right]$$

The collinear hypothesis would imply λ=1 and μ=ν=0
NA10(CERN) and E615 (Fermilab) → modulation of cos2φ up to 30%

■Intrinsic transverse momentum k_T of quarks inside the hadron → Boer-Mulders PDFs interaction between target and beam quarks

Single Polarised Drell-Yan cross-section The LO expansion of the single polarised Drell-Yan cross-section is:

$$\frac{d\sigma}{d^4qd\Omega} = \frac{\alpha^2}{Fq^2} \hat{\sigma_u} \begin{cases} \left(1 + D_{\sin^2\theta} A_U^{\cos 2\phi} \cos 2\theta\right) \\ + \left|\vec{S_T}\right| \left[A_T^{\sin\phi_S} \sin\phi_S + D_{\sin^2} \theta \left(A_T^{\sin(2\phi+\phi_S)} \sin(2\phi+\phi_S) + A_T^{\sin(2\phi-\phi_S)} \sin(2\phi-\phi_S)\right)\right] \end{cases}$$

$$A_{U}^{\cos 2\phi} \quad (BM)_{\pi} \otimes (BM)_{p}$$

$$A_{T}^{\sin \phi_{S}} \quad (f_{1})_{\pi} \otimes (Sivers)_{p}$$

$$A_{T}^{\sin(2\phi+\phi_{S})} \quad (BM)_{\pi} \otimes (Pretz.)_{p}$$

$$A_{T}^{\sin(2\phi-\phi_{S})} \quad (BM)_{\pi} \otimes (Trans)_{p}$$

A: azimuthal asymmetries: convolution of 2 PDFs D: depolarisation factor S: target spin component $\hat{\sigma}_U$: part of the cross-section surviving integration over ϕ and ϕ_s F: $4\sqrt{(P_a.P_b)^2 - M_a^2 M_b^2}$

Elena Rocco/CERN

Universality of TMD PDFs

 $f_{1T}^{\perp}(DY) = -f_{1T}^{\perp}(SIDIS)$

Because Sivers and Boer-Mulders PDFs are "time-reversal odd", they are expected to change sign when measured from SIDIS or from DY:

 $h_1^{\perp}(DY) = -h_1^{\perp}(SIDIS)$

We have the opportunity to test this sign change using the same spectrometer and the transversely polarised target at COMPASS

Purpose:

•To stop non-interacting beam particles and secondary hadron flux

•Radio protection issues (max $\sim 10^8$ pion /s)

Key elements:

- •COMPASS Polarised Target
- •Absorber
- •Tracking system and beam telescope
- •LAS Muon trigger
- •RICH and calorimetry for background suppresion

Drell-Yan test runs

19

The feasibility of the DY measurement was confirmed by the results of 3 test respectively in: 2007, 2008 and 2009. The most recent one was done using an hadron absorber.

Short data taking was taken, but sufficient to observe J/Ψ peak and DY events as expected from the MonteCarlo simulations and to well distinguish the cells target.

Drell-Yan statistical error projections

20

<u>Chiral Perturbation Theory</u> (ChPT) predicts low energy behaviour:

$$\frac{\mathrm{d}\sigma_{\pi\gamma}}{\mathrm{d}\Omega_{cm}} = \left[\frac{\mathrm{d}\sigma_{\pi\gamma}}{\mathrm{d}\Omega_{cm}}\right]_{\mathrm{point}} + C \cdot \frac{s - m_{\pi}^2}{s^2} P(\alpha_{\pi}, \beta_{\pi})$$
$$P(\alpha_{\pi}, \beta_{\pi}) = (1 - \cos\theta_{cm})^2 (\alpha_{\pi} - \beta_{\pi}) + (1 + \cos\theta_{cm})^2 (\alpha_{\pi} + \beta_{\pi}) \frac{s^2}{m_{\pi}^4}$$
$$+ (1 - \cos\theta_{cm})^3 (\alpha_2 - \beta_2) \frac{(s - m_{\pi}^2)^2}{24s}$$

ChPT is a low-energy effective field theory based on the approximate chiral symmetry of the Quantum Chromo Dinamycs (QCD) Hamiltonian, possible for small quark masses as u,d and s.

Elena Rocco/CERN

Primakoff at COMPASS: setup

➢ Pion and muon beams available → same momentum and setup configuration
 ➢ Muon is point like particle: Primakoff cross section should correspond to theoretically predicted one
 ➢ Study of systematic effect:
 Expected total errors

Days	π beam, days	μ beam, days	Flux π, 10 ¹¹	Flux µ10 ¹¹	α _π -β _π σ _{tot}	$a_{\pi}+eta_{\pi}$ σ_{tot}	a_2 - β_2 σ_{tot}
120	90	30	59	12	±0.66	±0.025	±1.94
					ChPT prediction		
					5.70	0.16	16

Kaon beam 90 days 1.4x10¹¹ flux: $\sigma_{tot}(\alpha_k - \beta_k) 0.08$, (ChPT prediction 1.0)

Conclusions

COMPASS 2 is on the way and we will provide

- Insight on GPDs through DVCS and DVMP processes;
- Fundamental QCD test for the first-ever polarised Drell-Yan experiment;
- Pion polarisability and kaon polarisability.

STAY TUNED!!!

THANK YOU!

Spares

Elena Rocco/CERN

Erice, September 2011

25

COMPASS Spectrometer

$DVCM \rightarrow RICH upgrade$

PID needed: RICH-1 upgrade

- Cross-section measurements: pseudoscalar $\rightarrow \widetilde{H} \& \widetilde{E}$ vector meson $\rightarrow H \& E$
- Vector meson production from transversely polarised target: ∞E/H

27

Unpolarised data taken w/o RPD in 2002-2004 on ⁶LiD and 2007/2010 on NH₃

Azimuthal asymmetries

- From the LO DY cross-section we access to 4 azimuthal asymmetries and each asymmetry contains a convolution of 2 PDFs, one from the target and another from beam quarks:
- $A_U^{\cos 2\phi}$ Access to Boer-Mulders functions of incoming hadrons;

 $A_T^{\sin \phi_S}$ Access to the Sivers function of target nucleon;

- $A_T^{\sin(2\phi+\phi_S)}$ Access to Boer-Mulders function of beam hadron and pretzelosity of target nucleon
- $A_T^{\sin(2\phi-\phi_S)}$ Access to Boer –Mulders function of beam hadron and to transversity of the target nucleon

ALL TO BE MEASURED EXPERIMENTALLY!!!

Unpolarised SIDIS measurements(I)

Parallel to the DVCS data taking with LH_2 target we can collect data in order to improve:

- Unpolarised PDFs, namely s(x);
- FFs for kaons

29

Unpolarised SIDIS measurements(II)

Azimuthal asymmetries in unpolarised SIDIS can reveal quark transverse momentum (k_T) effects beyond the collinear approximation

Uniqueness of COMPASS for DVCS

- m⁺ and m⁻ beams;
- Momentum 100-190 GeV/c;
- Beam polarisation 80% opposite for m⁺ and m⁻
- Coverage of intermediate x_B :
 - low \mathbf{x}_{B} : pure BH,
 - high \mathbf{x}_{B} : DVCS predominance
- Unexplored region between ZEUS+H1 and HERMES+JLAB

31