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Abstract

The colour fields created by the static tetraquark and pentaquark systems are computed in quenched SU(3) lattice QCD, with gauge
invariant lattice operators, in a 243 × 48 lattice at β = 6.2. We generate our quenched configurations with GPUs, and detail the respective
benchmanrks in different SU(N) groups. While at smaller distances the coulomb potential is expected to dominate, at larger distances it is
expected that fundamental flux tubes, similar to the flux-tube between a quark and an antiquark, emerge and confine the quarks. In order
to minimize the potential the fundamental flux tubes should connect at 120o angles. We compute the square of the colour fields utilizing
plaquettes, and locate the static sources with generalized Wilson loops and with APE smearing. The tetraquark system is well described
by a double-Y-shaped flux-tube, with two Steiner points, but when quark-antiquark pairs are close enough the two junctions collapse and
we have an X-shaped flux-tube, with one Steiner point. We also indicate how to solve the Schrödinger equation for the tetraquark, a three
coordinate (9 variable) system, and suggest that tetraquark resonances do exist.
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1) MOTIVATION

Figure 1: Belle tetraquark candidates Z+
b (10610) and Z+

b (10650) .
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1) MOTIVATION
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Figure 2: In the tetraquark flux tube (or string) model, the elementary flux tubes meet in two Fermat points, at an angle of α = 120◦ to
form a double-Y flux tube, except when this is impossible and the flux tube is X-shaped. In this model, when r2 >

√
3r1 the tetraquark

flux tube minimizes the energy, and when r2 <
√

3r1 the meson-meson minimizes the energy.

1) Motivation

Multiquark exotic hadrons like the tetraquark and the pentaquark, different from the the ordinary mesons and baryons, have been studied
and searched for many years. The tetraquark was initially proposed by Jaffe [1] as a bound state formed by two quarks and two antiquarks.
Presently several observed resonances are tetraquark candidates. The most recent tetraquark candidates have been reported by the Belle
Collaboration in May, the charged bottomonium Z+

b (10610) and Z+
b (10650) [2]. However a better understanding of tetraquarks is necessary

to confirm or disprove the X, Y and possibly also light resonances candidates as tetraquark states.
On the theoretical side, the first efforts have been to search for bound states below the strong decay threshold [3, 4, 5, 6], as it is apparent

that the absence of a potential barrier may produce a large decay width to any open channel. Recent investigations found that, even above
the strong decay threshold, the presence of a centrifugal barrier in high angular momentum multiquarks may increase the stability of the
system [7, 8].

In the last years, the static tetraquark potential has been studied in Lattice QCD computations [9, 10, 11]. The authors concluded that
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1) MOTIVATION

(a) (b)

Figure 3: (a) Lagrangian density 3D plot for r1 = 8, r2 = 14. (b) We also show the 3D plot for r1 = 8 and r2 = 8, to illustrate that even
at distances where the meson meson dominates the flip-flop potential, the meson meson mixing with the tetraquark is sufficiently small to
produce such a clear a tetraquark double-Y flux tube. The results are presented in lattice spacing units (colour online).

when the quark-quark are well separated from the antiquark-antiquark, the tetraquark potential is consistent with One Gluon Exchange
Coulomb potentials plus a four-body confining potential, suggesting the formation of a double-Y flux tube, as in Fig. 2, composed of five
linear fundamental flux tubes meeting in two Fermat points [6, 12, 13]. A Fermat, or Steiner, point is defined as a junction minimizing the
total length of strings, where linear individual strings join at 120◦ angles. When a quark approaches an antiquark, the minimum potential
changes to a sum of two quark-antiquark potentials, which indicates a two meson state. In principle a X-shaped flux-tube as in Fig. 2b
could also occur, but the potential minimization always leads in that case to a two-meson potential. This is consistent with the triple
flip-flop potential, minimizing the length, with either tetraquark flux tubes or meson-meson flux tubes, of thin flux tubes connecting the
different quarks or antiquarks [6, 8].

Here we study the colour fields for the static tetraquark system, with the aim of observing the tetraquark flux tubes suggested by these
static potential computations. The study of the colour fields in a tetraquark is important to discriminate between different multi-quark
Hamiltonian models. Unlike the colour fields of simpler few-body systems, say mesons, baryons and hybrids, [14, 15, 16, 17], the tetraquark
fields have not been previously studied in lattice QCD.

.
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2) EN PASSANT: GENERATING CONFIGURATIONS WITH GPUS

2) en passant: Generating configurations with GPUs
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Figure 4: Benchmarks with the NVIDIA 295 GTX (NVIDIA 200 generation). The results are presented in lattice spacing units (colour
online).

To produce the results presented in this work , we use 1121 quenched configurations in a 243 × 48 lattice at β = 6.2. To test whether
these configurations are already close to the continuum limit, we first compare the quark-antiquark static potential obtained using these
configurations with the potential of 381 configurations in a larger, 323 × 64 lattice, at the same β. The resulting quark-antiquark static
potentials are identical within the statistical error, showing that the volume size effects are sufficiently small in our 243 × 48 lattice. We
present our results in lattice spacing units of a, with a = 0.07261(85) fm or a−1 = 2718 ± 32 MeV. We generate our configurations
in NVIDIA GPUs of the FERMI series (480, 580 and Tesla 2070) with a SU(3) CUDA code upgraded from our SU(2) combination of
Cabibbo-Marinari pseudoheatbath and over-relaxation algorithm [18, 19]. Our SU(3) updates involve three SU(2) subgroups, we work with
9 complex numbers, and we reunitarize the matrix. We have two options to save the configurations, either in a structure of arrays where
each array lists a given complex component for all the lattice sites, or in an array of structures where each structure is a SU(3) matrix.
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2) EN PASSANT: GENERATING CONFIGURATIONS WITH GPUS
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Figure 5: Comparing benchmarks for NVIDIA 295 GTX and 580 GTX boards, respectively from the 200 and Fermi generations. The
results are presented in lattice spacing units (colour online).

Table 1: Memory Load per Thread

Kernel SU(3) Single/Double SU(3) Single/Double SU(4) Single/Double

per thread 18 reals (bytes) 12 reals (bytes) 32 reals (bytes)

PHB and OVR 342 1368/2736 228 912/1824 608 2431/4864

per link

REU 72 288/576 48 192/384 128 512/1024

per site

PLAQ 432 1728/3456 288 1152/2304 768 3072/6144

per site
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2) EN PASSANT: GENERATING CONFIGURATIONS WITH GPUS

Table 2: Performance GFlops in a 244 lattice.

SU(3) Single Precision PHB OVR REU PLAQ

GTX580 SOA 12real Cache 140.3 160.5 250.3 214.6

GTX295 SOA 12real GobalM 75.4 106.2 99.3 214.4

GTX295 SOA 12real TexM 78.2 109.9 97.6 211.2

GTX580 SOA 18real Cache 88.5 98.7 148.5 134.7

GTX295 SOA 18real GobalM 44.5 54.2 53.6 110.7

GTX295 SOA 18real TexM 47.0 56.3 54.4 102.1

GTX580 AOS 18real Cache 62.6 64.7 49.0 105.7

GTX295 AOS 18real GobalM 19.2 22.1 13.3 29.9

GTX295 AOS 18real TexM 47.1 58.9 16.3 80.2

SU(3) Double Precision PHB OVR REU PLAQ

GTX580 SOA 12real Cache 40.8 40.2 124.3 58.8

GTX295 SOA 12real GobalM 26.4 31.7 55.6 41.3

GTX295 SOA 12real TexM 28.5 31.8 60.4 40.8

GTX580 SOA 18real Cache 30.3 29.6 53.1 43.0

GTX295 SOA 18real GobalM 16.8 19.4 39.2 26.1

GTX295 SOA 18real TexM 19.4 21.1 41.2 25.5

GTX580 AOS 18real Cache 29.4 28.9 23.4 37.6

GTX295 AOS 18real GobalM 11.6 13.0 10.8 15.4

GTX295 AOS 18real TexM 17.0 17.1 14.5 18.4

Table 3: Performance for the PSeudoHeatBath, OVeRrelaxation,
REUnitarization and PLAQuette. SOA and AOS stand respectively
for structure of arrays and array of structures.

SU(4) Single Precision PHB OVR REU PLAQ

GTX580 SOA Cache 32.9 34.0 59.2 34.3

GTX295 SOA GobalM 18.2 18.3 21.7 17.6

GTX295 SOA TexM 18.9 19.4 21.4 18.7

GTX580 AOS Cache 31.4 32.6 18.2 26.4

GTX295 AOS GobalM 7.6 8.2 5.8 9.0

GTX295 AOS TexM 10.8 11.6 9.0 12.8

SU(4) Double Precision PHB OVR REU PLAQ

GTX580 SOA Cache 13.9 13.5 10.5 18.3

GTX295 SOA GobalM 7.3 7.5 5.8 9.0

GTX295 SOA TexM 7.2 7.2 5.9 8.5

GTX580 AOS Cache 12.8 12.4 6.6 13.8

GTX295 AOS GobalM 4.8 5.0 3.7 4.6

GTX295 AOS TexM 5.4 5.4 5.1 4.4
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3) COMPUTING FIELDS WITH THE WILSON LOOP AND THE PLAQUETTE

Wilson loop W5Q in a gauge invariant manner as shown in Figs.6(a) and (b),
respectively.
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Figure 6: (a) The tetraquark Wilson loop W4Q. (b) The pentaquark Wilson
loop W5Q. The contours M,Mi, Rj , Lj(i = 1, 2, j = 3, 4) are line-like and
Rj , Lj(j = 1, 2) are staple-like. The multi-quark Wilson loop physically means
that a gauge-invariant multi-quark state is generated at t = 0 and annihilated
at t = T with quarks being spatially fixed in R3 for 0 < t < T .

The tetraquark Wilson loop W4Q and the pentaquark Wilson loop W5Q are
defined by

W4Q ≡ 1

3
tr(M̃1R̃12M̃2L̃12),

W5Q ≡ 1

3!
ǫabcǫa

′b′c′Maa′
(R̃3R̃12R̃4)

bb′(L̃3L̃12L̃4)
cc′ , (4)

where M̃ , M̃i, L̃j and R̃j (i=1,2, j=1,2,3,4) are given by

M̃, M̃i, R̃j , L̃j ≡ P exp {ig
∫

M,Mi,Rj ,Lj

dxµAµ(x)} ∈ SU(3)c. (5)

Here, R̃12 and L̃12 are defined by

R̃a′a
12 ≡ 1

2
ǫabcǫa

′b′c′Rbb′
1 Rcc′

2 , L̃a′a
12 ≡ 1

2
ǫabcǫa

′b′c′Lbb′
1 Lcc′

2 . (6)

The multi-quark Wilson loop physically means that a gauge-invariant multi-
quark state is generated at t = 0 and annihilated at t = T with quarks being
spatially fixed in R3 for 0 < t < T .

The multi-quark potential is obtained from the vacuum expectation value of
the multi-quark Wilson loop as

V4Q = − lim
T→∞

1

T
ln〈W4Q〉, V5Q = − lim

T→∞
1

T
ln〈W5Q〉. (7)

4.3 Lattice QCD Result of the Pentaquark Potential

We perform the first study of the pentaquark potential V5Q in lattice QCD
with (β=6.0, 163 × 32) for 56 different patterns of QQ-Q̄-QQ type pentaquark

8

Figure 6: Tetraquark Wilson loop as defined by Alexandrou et al [9], and by Okiharu et al [10].

3) Computing Fields with the Wilson loop and the Plaquette

To impose a static tetraquark, we utilize the respective Wilson loop [9, 10] of Fig. 6, given by W4Q = 1
3
Tr (M1R12M2L12), where

Raa′

12 =
1

2
εabcεa

′b′c′Rbb′

1 Rcc′

2 ,

Laa
′

12 =
1

2
εabcεa

′b′c′Lbb
′

1 L
cc′

2 . (1)
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3) COMPUTING FIELDS WITH THE WILSON LOOP AND THE PLAQUETTE

The chromoelectric and chromomagnetic fields on the lattice are given by the Wilson loop and plaquette expectation values,

〈
E2
i (r)

〉
= 〈P (r)0i〉 −

〈W (r1, r2, T )P (r)0i〉
〈W (r1, r2, T )〉 (2)

〈
B2
i (r)

〉
=
〈W (r1, r2, T )P (r)jk〉
〈W 〉 (r1, r2, T )

− 〈P (r)jk〉 ,

where the jk indices of the plaquette complement the index i of the magnetic field, and where the plaquette at position r = (x, y, z) is
computed at t = T/2,

Pµν (r) = 1− 1

3
ReTr

[
Uµ(r)Uν(r + µ)U †µ(r + ν)U †ν(r)

]
. (3)

The energy (H) and lagrangian (L) densities are then computed from the fields,

〈H(r)〉 =
1

2

(〈
E2(r)

〉
+
〈
B2(r)

〉)
, (4)

〈L(r)〉 =
1

2

(〈
E2(r)

〉
−
〈
B2(r)

〉)
. (5)

To compute the static field expectation value, we plot the expectation value 〈E2
i (r)〉 or 〈B2

i (r)〉 as a function of the temporal extent T of
the Wilson loop. At sufficiently large T , the groundstate corresponding to the studied quantum numbers dominates, and the expectation
value tends to a horizontal plateau. In order to improve the signal to noise ratio of the Wilson loop, we use 50 iterations of APE Smearing
with w = 0.2 (as in [16]) in the spatial directions and one iteration of hypercubic blocking (HYP) in the temporal direction. [20], with
α1 = 0.75, α2 = 0.6 and α3 = 0.3. Note that these two procedures are only applied to the Wilson Loop, not to the plaquette. To compute
the fields, we fit the horizontal plateaux obtained for each point r determined by the plaquette position, but we consider z = 0 for simplicity.
For the distances r1 and r2 considered, we find in the range of T ∈ [3, 12] in lattice units, horizontal plateaux with a χ2 /dof ∈ [0.3, 2.0].
We finally compute the error bars of the fields with the jackknife method.

.
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4) EN PASSANT: INSIGHT IN THE QUARK-ANTIQUARK FLUX TUBE

4) en passant: Insight in the quark-antiquark flux tube

Figure 7: Density plot of the static quark-antiquark squared E and B, Lagrangian and Energy field densities for r = 14. The results are
presented in lattice spacing units (colour online).

.
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4) EN PASSANT: INSIGHT IN THE QUARK-ANTIQUARK FLUX TUBE
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Figure 8: Cut of the fields in the longitudinal direction for r = 14. The results are presented in lattice spacing units (colour online).
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4) EN PASSANT: INSIGHT IN THE QUARK-ANTIQUARK FLUX TUBE
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Figure 9: Perpendicular cut of the longitudinal and transversal squared components of the Electric field. and the Lagrangian and Energy
densities for a static quark-antiquark. The results are presented in lattice spacing units (colour online).
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5) THE TETRAQUARK FIELDS

5) The Tetraquark fields

In our simulations, the quarks are fixed at (± r1/2,−r2/2, 0) and the antiquarks at (± r1/2, r2/2, 0), with r1 extending up to 8 lattice
spacing units and r2 extended up to 14 lattice spacing units, in order to include the relevant cases where r2 >

√
3r1. Notice that in the

string picture, at the line r2 =
√

3r1 in our (r1, r2) parameter space, the transition between the double-Y, or butterfly, tetraquark geometry
in Fig. 2a to the meson-meson geometry should occur. The results are presented only for the xy plane since the quarks are in this plane
and the results with z 6= 0 are less interesting for this study. The flux tube fields can be seen in Fig. 3, 10 and 11. Theses figures exhibit
clearly tetraquark double-Y, or butterfly, shaped flux tubes. The flux tubes have a finite width, and are not infinitely thin as in the string
models inspiring the Fermat points and the triple flip-flop potential, but nevertheless the junctions are close to the Fermat points, thus
justifying the use of string models for the quark confinement in constituent quark models.

In Fig. ??, we plot the chromoelectric field along the central flux tube,
〈
E2
y

〉
at x = 0, for r1 = 8, r2 = 14. As expected, the chromoelectric

field along y is in agreement with the position of the Fermat points. The chromoelectric field along the x = 0 central axis is maximal
close to the Fermat points situated at x ' −4.69 and at x ' 4.69, flattens in the middle of the flux tube. Outside the flux tube, the
chromoelectric field is almost residual.

In Fig. 12, we compare the chromoelectric field for the tetraquark and the quark-antiquark system in the middle of the flux tube between
the (di)quark and the (di)antiquark. As can be seen, for our larger distance r2 = 14 where the source effects are small, the chromoelectric
field is identical up to the error bars, and this confirms that the tetraquark flux tube is composed of a set of fundamental flux tubes with
Fermat junctions.

To check which of the colour structures, tetraquark or meson-meson, produces the groundstate flux tube, we study the χ2/dof of the T
plateaux. Clearly, as expected, the X-shaped geometry of Fig. 2b never produces acceptable plateaux in the range where the meson-meson
plateaux are good. But, surprisingly, event at distances as small as r2 ' 1

2
r1
√

3, illustrated in Fig. 3b, where the flip-flop potential favours
the two-meson flux tube, we find T plateaux with a good χ2 /dof. This shows that the mixing between the tetraquark flux tube and the
meson-meson flux tube is small, and it is possible to study clear tetraquark flux tubes even at relatively small quark-antiquark distances.
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5) THE TETRAQUARK FIELDS

Figure 10: Lagrangian density for r2 = 14 and r1 from 0 to 6. The black dot points correspond to the Fermat points. The results are
presented in lattice spacing units (colour online).
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5) THE TETRAQUARK FIELDS

(a)
〈
E2

〉
(b) −

〈
B2

〉

(c) Energy Density (d) Lagrangian Density

Figure 11: Colour fields, energy density and Lagrangian density for r1 = 8 and r2 = 14. The black dot points correspond to the Fermat
points. The results are presented in lattice spacing units (colour online).
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5) THE TETRAQUARK FIELDS
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Figure 12:
〈
E2
y

〉
in the central axis x = 0 for r1 = 8, r2 = 14. We show with vertical dashed lines the location of the two Fermat points.

Profile cut at y = 0 of the chromoelectric field for the tetraquark and quark-antiquark systems in the middle of the flux tube. The results
are presented in lattice spacing units (colour online).
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6) EN PASSANT: COMPUTING PHASE SHIFTS FOR APPROXIMATE 2-COORDINATE TRETAQUARKS

6) en passant: Computing phase shifts for approximate 2-coordinate tretaquarks
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Figure 13: Triple flip-flop Potential potential. To the list of potentials to minimize including usually only two different meson pair potentials,
we join another potential, the tetraquark potential. We also show the plot of our simplified flip-flop potential, as a function of the two
radial variables r (compact) and ρ (open).

Recently we developed a unitarized formalism to study tetraquarks using the triple flip-flop potential, which includes two meson-meson
potentials and the tetraquark four-body potential. This can be related to the Jaffe-Wilczek and to the Karliner-Lipkin tetraquark models,
where we also consider the possible open channels, since the four quarks and antiquarks may at any time escape to a pair of mesons.

We studied a simplified two-variable toy model and explore the analogy with a cherry in a glass, but a broken one where the cherry may
escape from. It is quite interesting to have our system confined or compact in one variable and infinite in the other variable.

In this framework we solved the two-variable Schrödinger equation in configuration space. With the finite difference method, we compute
the spectrum, we search for localized states and we attempt to compute phase shifts.

We then applied the outgoing spherical wave method to compute in detail the phase shifts and and to determine the decay widths. We
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Figure 14: Among the many continuum states we may get a few localized states and semi-localized states, i e boundstates and resonances.
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Figure 15: Momenta of the various components as a function of the energy, and "phase shifts" obtained from the finite differences ( by
projecting the eigenstates in the meson-meson eigenstates ). As can be seen the behaviour is irregular when we have more than one channel.
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Figure 16: Folding the confined coordinate with the solution of the meson Schrödinger equation then we can compute with a large precision
the phase shifts. Here we illustrate the case of for lr = 0, 1, 2 and 3, with nr = 0. We aslo show the decay widths as a function of lr

fold the confined coordinate with the solution of the meson Schrödinger equation. We explored the model in the equal mass case, and we
found narrow resonances. In particular the existence of two commuting angular momenta is responsible for our small decay widths.

.
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7) Foreword

• The flux tubes remain interesting in Lattice QCD, our results support the string model of confinement, in particular for the tetraquark
static potential [21].

• The mixing between the tetraquark and meson-meson flux-tubes is small, which may contribute for narrower tetraquark resonances.

• After our preliminary study of the approximate two-variable tretaquark, we are now moving on to the solutions of the Schrödinger
equation for the tetraquark, in the full triple-flip-flop potential.

• We are now studying in more detail the flux tubes, in particular for the pentaquark.

• We will soon have codes for SU(2), SU(3), SU(4), etc, available on our webpage,

http://nemea.ist.utl.pt/~ptqcd/

.

.
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Figure 17: Wilson loop geometry, and preliminary result for the field, (Lagrangian density) for the static pentaquark. The results are
presented in lattice spacing units (colour online).
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