Transverse (Spin) Structure of Hadrons

Matthias Burkardt
New Mexico State University

September 18, 2011

- Probabilistic interpretation of GPDs as Fourier transforms of impact parameter dependent PDFs
- $H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs when the target is \perp polarized
\hookrightarrow Ji relation
- Chromodynamik lensing and \perp single-spin asymmetries (SSA)

$$
\left.\begin{array}{c}
\text { transverse distortion of PDFs } \\
+ \text { final state interactions }
\end{array}\right\} \Rightarrow
$$

\hookrightarrow SSA in $\quad \gamma N \longrightarrow \pi+X$

- quark-gluon correlations $\rightarrow \perp$ force on q in DIS
- Summary

- virtual Compton scattering: $\gamma^{*} p \longrightarrow \gamma p$ (actually: $e^{-} p \longrightarrow e^{-} \gamma p$)
- 'deeply': $-q_{\gamma}^{2} \gg M_{p}^{2},|t| \longrightarrow$ Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
\hookrightarrow only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
\hookrightarrow DVCS amplitude provides access to momentum-decomposition of form factor $=$ Generalized Parton Distribution (GPDs).

$$
\int d x H_{q}(x, \xi, t)=F_{1}^{q}(t) \quad \int d x E_{q}(x, \xi, t)=F_{2}^{q}(t)
$$

- virtual Compton scattering: $\gamma^{*} p \longrightarrow \gamma p$ (actually: $e^{-} p \longrightarrow e^{-} \gamma p$)
- 'deeply': $-q_{\gamma}^{2} \gg M_{p}^{2},|t| \longrightarrow$ Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
\hookrightarrow only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
\hookrightarrow DVCS amplitude provides access to momentum-decomposition of form factor $=$ Generalized Parton Distribution (GPDs).

$$
\int d x H_{q}(x, \xi, t)=F_{1}^{q}(t) \quad \int d x E_{q}(x, \xi, t)=F_{2}^{q}(t)
$$

- form factors: $\stackrel{F T}{\stackrel{ }{\longleftrightarrow}} \rho(\vec{r})$
- $G P D s(x, \vec{\Delta})$: form factor for quarks with momentum fraction x
\hookrightarrow suitable FT of GPDs should provide spatial distribution of quarks with momentum fraction x
- careful: cannot measure longitudinal momentum (x) and longitudinal position simultaneously (Heisenberg)
\hookrightarrow consider purely transverse momentum transfer

Impact Parameter Dependent Quark Distributions

$$
q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H\left(x, \xi=0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}
$$

$q\left(x, \mathbf{b}_{\perp}\right)=$ parton distribution as a function of the separation \mathbf{b}_{\perp} from the transverse center of momentum $\mathbf{R}_{\perp} \equiv \sum_{i \in q, g} \mathbf{r}_{\perp, i} x_{i}$ MB, Phys. Rev. D62, 071503 (2000)

- No relativistic corrections (Galilean subgroup!)
\hookrightarrow corollary: interpretation of 2 d -FT of $F_{1}\left(Q^{2}\right)$ as charge density in transverse plane also free of relativistic corrections
- probabilistic interpretation

Impact parameter dependent quark distributions

unpolarized proton

- $q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \boldsymbol{\Delta}_{\perp}}$
- $x=$ momentum fraction of the quark
- $\vec{b}=\perp$ distance of quark from \perp center of momentum
- small x : large 'meson cloud'
- larger x : compact 'valence core'
- $x \rightarrow 1$: active quark becomes center of momentum
$\hookrightarrow \vec{b}_{\perp} \rightarrow 0$ (narrow distribution) for $x \rightarrow 1$

Impact parameter dependent quark distributions

proton polarized in $+\hat{x}$ direction

no axial symmetry!

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} \\
& -\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}
\end{aligned}
$$

Physics: relevant density in DIS is $j^{+} \equiv j^{0}+j^{3}$ and left-right asymmetry from j^{3}

Impact parameter dependent quark distributions

Impact parameter dependent quark distributions

sign \& magnitude of the average shift model-independently related to p / n anomalous magnetic moments:

$$
\begin{aligned}
\left\langle b_{y}^{q}\right\rangle & \equiv \int d x \int d^{2} b_{\perp} q\left(x, \mathbf{b}_{\perp}\right) b_{y} \\
= & \frac{1}{2 M} \int d x E_{q}(x, 0,0)=\frac{\kappa_{q}}{2 M}
\end{aligned}
$$

$\kappa^{p}=1.913=\frac{2}{3} \kappa_{u}^{p}-\frac{1}{3} \kappa_{d}^{p}+\ldots$

- u-quarks: $\kappa_{u}^{p}=2 \kappa_{p}+\kappa_{n}=1.673$
\hookrightarrow shift in $+\hat{y}$ direction
- d-quarks: $\kappa_{d}^{p}=2 \kappa_{n}+\kappa_{p}=-2.033$
\hookrightarrow shift in $-\hat{y}$ direction
- $\left\langle b_{y}^{q}\right\rangle=\mathcal{O}(\pm 0.2 \mathrm{fm}) \quad$!!!!

Impact parameter dependent quark distributions

anomalous gravito-magnetic moment

- $B(0) \equiv \sum_{i \in q, g} B_{i}(0)=0$ $(\rightarrow$ S.J.Brodsky)
- $B_{i}(0)=$ shift of CoM for flavor i in \perp pol. nucleon relative to nucleon CoM
$\hookrightarrow B(0)=0 \quad \leftrightarrow \quad \mathrm{CoM}$ of quarks and gluons sum up to CoM of nucleon
- lattice (LHPC, QCDSF) u and d quarks seem to almost saturate $\sum_{i \in q, g} B_{i}(0)=0$
example: semi-inclusive deep-inelastic scattering (SIDIS) $\gamma p \rightarrow \pi X$

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign 'determined' by $\kappa_{u} \& \kappa_{d}$
- attractive FSI deflects active quark towards the CoM
\hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$-direction into momentum asymmetry that favors $-\hat{y}$ direction \rightarrow 'chromodynamic lensing'

$$
\Rightarrow \quad \kappa_{p}, \kappa_{n} \longleftrightarrow \quad \text { sign of SSA!!!!!!!! }(\mathrm{MB}, 2004)
$$

- confirmed by Hermes (and recent Compass) p data; consistent with vanishing isoscalar Sivers (ComPASS)
compare FSI for 'red' q that is being knocked out of nucleon with ISI for 'anti-red' \bar{q} that is about to annihilate with a 'red' target q

a)

b)

FSI in SIDIS

- knocked-out q 'red'
\hookrightarrow spectators 'anti-red'
\hookrightarrow interaction between knocked-out quark and spectators attractive

ISI in DY

- incoming \bar{q} 'anti-red'
\hookrightarrow struck target q 'red'
\hookrightarrow spectators also 'anti-red'
\hookrightarrow interaction between incoming \bar{q} and spectators repulsive
test of $f_{1 T}^{\perp}(x, \mathbf{k}-\perp)_{D Y}=-f_{1 T}^{\perp}(x, \mathbf{k}-\perp)_{S I D I S}$ critical test of TMD factorization approach

Angular Momentum Carried by Quarks

Total (Spin+Orbital) Quark Angular Momentum

$$
J_{q}^{x}=L_{q}^{x}+S_{q}^{x}=\int d^{3} r\left[y T_{q}^{0 z}(\vec{r})-z T_{q}^{0 y}(\vec{r})\right]
$$

- $T_{q}^{\mu \nu}(\vec{r})$ energy momentum tensor $\left(T_{q}^{\mu \nu}(\vec{r})=T_{q}^{\nu \mu}(\vec{r})\right)$
- $T_{q}^{0 i}(\vec{r})$ momentum density $\left[P_{q}^{i}=\int d^{3} r T_{q}^{0 i}(\vec{r})\right]$
- think: $(\vec{r} \times \vec{p})^{x}=y p^{z}-z p^{y}$
relate to impact parameter dependent quark distributions $q\left(x, \mathbf{r}_{\perp}\right)$:
Consider spherically symmetric wave packet with nucleon polarized in $+\hat{x}$ direction
- eigenstate under rotations about x-axis
\hookrightarrow both terms in J_{q}^{x} equal:

$$
\begin{aligned}
& J_{q}^{x}=2 \int d^{3} r y T_{q}^{0 z}(\vec{r})=\int d^{3} r y\left[T_{q}^{0 z}(\vec{r})+T_{q}^{z 0}(\vec{r})\right] \\
& \bullet \int d^{3} r y T_{q}^{00}(\vec{r})=0=\int d^{3} r y T_{q}^{z z}(\vec{r})
\end{aligned}
$$

$$
\Rightarrow \quad J_{q}^{x}=\int d^{3} r y T_{q}^{++}(\vec{r}) \quad \text { with } \quad T^{++} \equiv T^{00}+T^{0 z}+T^{z 0}+T^{z z}
$$

relate to impact parameter dependent quark distributions $q\left(x, \mathbf{r}_{\perp}\right)$:
Consider spherically symmetric wave packet with nucleon polarized in $+\hat{x}$ direction

- eigenstate under rotations about x-axis
\hookrightarrow both terms in J_{q}^{x} equal:
$J_{q}^{x}=2 \int d^{3} r y T_{q}^{0 z}(\vec{r})=\int d^{3} r y\left[T_{q}^{0 z}(\vec{r})+T_{q}^{z 0}(\vec{r})\right]$
- $\int d^{3} r y T_{q}^{00}(\vec{r})=0=\int d^{3} r y T_{q}^{z z}(\vec{r})$
$\Rightarrow \quad J_{q}^{x}=\int d^{3} r y T_{q}^{++}(\vec{r}) \quad$ with $\quad T^{++} \equiv T^{00}+T^{0 z}+T^{z 0}+T^{z z}$
- $\int d x x q\left(x, \mathbf{r}_{\perp}\right)=\frac{1}{2 m_{N}} \int d z T^{++}(\vec{r})$
(note: here x is momentum fraction and not r^{x})
$\hookrightarrow J_{q}^{x}=m_{N} \int d x x r^{y} q\left(x, \mathbf{r}_{\perp}\right)$
- before applying this result to \perp shifted PDFs, need to consider 'overall \perp shift' of CoM for \perp polarized target...

Angular Momentum Carried by Quarks

relate to impact parameter dependent quark distributions $q\left(x, \mathbf{b}_{\perp}\right)$:

- Thus $J_{q}^{x}=m_{N} \int d x x r^{y} q\left(x, \mathbf{r}_{\perp}\right)$ with $b^{y}=r^{y}-\frac{1}{2 m_{N}}$, where $q\left(x, \mathbf{r}_{\perp}\right)$ is distribution relative to CoM of whole nucleon
- recall: $q\left(x, \mathbf{b}_{\perp}\right)$ for nucleon polarized in $+\hat{x}$ direction

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right)= & \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} \\
& -\frac{1}{2 M_{N}} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} \\
\Rightarrow J_{q}^{x}= & M_{N} \int d x x r^{y} q\left(x, \mathbf{r}_{\perp}\right)=\int d x x\left(m_{N} b^{y}+\frac{1}{2}\right) q\left(x, \mathbf{r}_{\perp}\right) \\
= & \frac{1}{2} \int d x x[H(x, 0,0)+E(x, 0,0)]
\end{aligned}
$$

Angular Momentum Carried by Quarks

relate to impact parameter dependent quark distributions $q\left(x, \mathbf{b}_{\perp}\right)$:

- Thus $J_{q}^{x}=m_{N} \int d x x r^{y} q\left(x, \mathbf{r}_{\perp}\right)$ with $b^{y}=r^{y}-\frac{1}{2 m_{N}}$, where $q\left(x, \mathbf{r}_{\perp}\right)$ is distribution relative to CoM of whole nucleon
- recall: $q\left(x, \mathbf{b}_{\perp}\right)$ for nucleon polarized in $+\hat{x}$ direction

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right)= & \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H_{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} \\
& -\frac{1}{2 M_{N}} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} \\
\Rightarrow J_{q}^{x}= & M_{N} \int d x x r^{y} q\left(x, \mathbf{r}_{\perp}\right)=\int d x x\left(m_{N} b^{y}+\frac{1}{2}\right) q\left(x, \mathbf{r}_{\perp}\right) \\
= & \frac{1}{2} \int d x x[H(x, 0,0)+E(x, 0,0)]
\end{aligned}
$$

- X.Ji (1996): rotational invariance \Rightarrow apply to all components of \vec{J}
- partonic interpretation exists only for \perp components!

unpolarized target

- all q polns. equally likely

unpolarized target

- q with pol. \uparrow shifted to left

unpolarized target

- q with pol. \downarrow shifted to right

unpolarized target

- q with pol. \rightarrow shifted to top

unpolarized target

- q with pol. \leftarrow shifted to bottom

q with polarization \odot

lattice calculations (QCDSF)

unpolarized target

- transversity distribution in unpol. target described by chirally odd GPD \bar{E}_{T}
- $\bar{E}_{T}>0$ for $u \& d(\mathrm{QCDSF})$
- connection $h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right) \leftrightarrow \bar{E}_{T}$ similar to $f_{1 T}^{\perp}\left(x, \mathbf{k}_{\perp}\right) \leftrightarrow E$.
$\hookrightarrow h_{1}^{\perp}\left(x, \mathbf{k}_{\perp}\right)<0$ for $u / p, d / p$, $u / \pi, \bar{d} / \pi, . .(\mathrm{MB}+\mathrm{BH}, 2008)$
- different valence quarks add coherently $\left|h_{1}^{\perp}\right|>\left|f_{1}^{\perp}\right|$ (MB+BH; Musch)

higher twist in polarized DIS

- $\sigma_{L L} \propto g_{1}-\frac{2 M x}{\nu} g_{2}$
- $g_{1}=\frac{1}{2} \sum_{q} e_{q}^{2} g_{1}^{q}$ with $g_{1}^{q}=q^{\uparrow}(x)+\bar{q}^{\uparrow}(x)-q^{\downarrow}(x)-\bar{q}^{\downarrow}(x)$
- g_{2} involves quark-gluon correlations
\hookrightarrow no parton interpret. as difference between number densities for g_{2}
- for \perp pol. target, $g_{1} \& g_{2}$ contribute equally

$$
\sigma_{L T} \propto g_{T} \equiv g_{1}+g_{2}
$$

\hookrightarrow 'clean' separation between g_{2} and $\frac{1}{Q^{2}}$ corrections to g_{1}

- What can one learn from g_{2} ?
- $g_{2}=g_{2}^{W W}+\bar{g}_{2}$ with $g_{2}^{W W}(x) \equiv-g_{1}(x)+\int_{x}^{1} \frac{d y}{y} g_{1}(y)$

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

$$
\sqrt{2} G^{+y}=G^{0 y}+G^{z y}=-E^{y}+B^{x}
$$

\hookrightarrow write $d_{2}=\frac{1}{4}\left(\chi_{E}+2 \chi_{M}\right)$ with

$$
\begin{aligned}
& 2 M^{2} \vec{S} \chi_{E}=\langle P, S| \vec{j}_{a} \times \vec{E}_{a}|P, S\rangle \\
& 2 M^{2} \vec{S} \chi_{B}=\langle P, S| j_{a}^{0} \times \vec{B}_{a}|P, S\rangle
\end{aligned}
$$

called color-electric and magnetic 'polarizabilities'

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

$$
\sqrt{2} G^{+y}=G^{0 y}+G^{z y}=-E^{y}+B^{x}
$$

\hookrightarrow write $d_{2}=\frac{1}{4}\left(\chi_{E}+2 \chi_{M}\right)$ with

$$
\begin{aligned}
& 2 M^{2} \vec{S} \chi_{E}=\langle P, S| \vec{j}_{a} \times \vec{E}_{a}|P, S\rangle \\
& 2 M^{2} \vec{S} \chi_{B}=\langle P, S| j_{a}^{0} \times \vec{B}_{a}|P, S\rangle
\end{aligned}
$$

called color-electric and magnetic 'polarizabilities'

names misleading:

these are not the response of the nucleon due to an applied color field!

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

$\sqrt{2} G^{+y}=G^{0 y}+G^{z y}=-E^{y}+B^{x}$

$$
d_{2} \equiv 3 \int d x x^{2} \bar{g}_{2}(x)=\frac{1}{2 M P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

$\sqrt{2} G^{+y}=G^{0 y}+G^{z y}=-E^{y}+B^{x}=-(\vec{E}+\vec{v} \times \vec{B})^{y}$ for $\vec{v}=(0,0,-1)$
$\hookrightarrow d_{2} \leftrightarrow$ average color Lorentz force acting on quark moving with $v=c$ in $-\hat{z}$ direction in the instant after being struck by γ^{*}

$$
\left\langle F^{y}\right\rangle=-2 M^{2} d_{2}=-\frac{M}{P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

cf. Qiu-Sterman matrix element $\left\langle k_{\perp}^{y}\right\rangle \equiv \int_{0}^{1} d x \int \mathrm{~d}^{2} k_{\perp} k_{\perp}^{2} f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)$

$$
\left\langle k_{\perp}^{y}\right\rangle=-\frac{1}{2 p^{+}}\langle P, S| \bar{q}(0) \int_{0}^{\infty} d x^{-} g G^{+y}\left(x^{-}\right) \gamma^{+} q(0)|P, S\rangle
$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

Quark-Gluon Correlations: Interpretation

color Lorentz force

$d_{2} \leftrightarrow$ average color Lorentz force acting on quark moving with $v=c$ in $-\hat{z}$ direction in the instant after being struck by γ^{*}

$$
\left\langle F^{y}\right\rangle=-2 M^{2} d_{2}=-\frac{M}{P^{+2} S^{x}}\langle P, S| \bar{q}(0) g G^{+y}(0) \gamma^{+} q(0)|P, S\rangle
$$

sign of d_{2}

- $\kappa_{q} / p \longrightarrow$ sign of deformation
\hookrightarrow direction of average force
$\hookrightarrow d_{2}^{u}>0, d_{2}^{d}<0$
- cf. $f_{1 T}^{\perp u}<0, f_{1 T}^{\perp u}<0$
lattice (Göckeler et al., 2005)
$d_{2}^{u} \approx 0.010, d_{2}^{d} \approx-0.0056$
please: up to date lattice calcs.

Quark-Gluon Correlations: Interpretation

color Lorentz force

$e_{2} \leftrightarrow$ average color Lorentz force (in \hat{y}-direction) acting on quark (with transversity \hat{x}) moving with $v=c$ in $-\hat{z}$ direction in the instant after being struck by γ^{*}

$$
\left\langle F^{y}\right\rangle=M^{2} e_{2} \equiv M^{2} \int_{0}^{1} d x \bar{e}_{2}(x)=\frac{M}{4 P^{+^{2}}} \sum_{i=1,2}\langle P| \bar{q}(0) g G^{+i}(0) \sigma^{+i} q(0)|P\rangle
$$

chirally even

- GPD $E_{q} \Rightarrow \mathbf{b}_{\perp}$ deformation of unpol. q distr. in \perp pol. target
$\hookrightarrow f_{1 T}^{\perp}$
$\hookrightarrow d_{2} \equiv \int d x x^{2} \bar{g}_{2}$ force
lattice (Göckeler et al., 2005)
$d_{2}^{u} \approx 0.010, d_{2}^{d} \approx-0.0056$
please: up to date lattice calcs.

chirally odd

- GPD $\bar{E}_{T} \Rightarrow \mathbf{b}_{\perp}$ deformation of quarks with transversity in unpol. target
$\hookrightarrow h_{1}^{\perp}$
$\hookrightarrow e_{2} \equiv \int d x x^{2} \bar{e}_{2}$ force

lattice

B.Musch ...

- Deeply Virtual Compton Scattering (DVCS) \longrightarrow GPDs
\hookrightarrow impact parameter dependent PDFs $q\left(x, \mathbf{b}_{\perp}\right)$
- $E^{q}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \leftrightarrow \kappa_{q / p}$ (contribution from quark flavor q to anomalous magnetic moment)
- $E^{q}\left(x, 0,-\boldsymbol{\Delta}_{\perp}^{2}\right) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
- \perp deformation \leftrightarrow (sign of) SSA (Sivers; Boer-Mulders)
- parton interpretation for Ji-relation
- $L_{q} \neq \mathcal{L}_{q}$
- higher-twist $\left(\int d x x^{2} \bar{g}_{2}(x), \int d x x^{2} \bar{e}(x)\right) \leftrightarrow \perp$ force in DIS
- \perp deformation \leftrightarrow (sign of) quark-gluon correlations $\left(\int d x x^{2} \bar{g}_{2}(x), \int d x x^{2} \bar{e}(x)\right)$

first: QED without electrons

- apply $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{b}(\vec{a} \cdot \vec{c})$ to $\vec{E} \times(\vec{\nabla} \times \vec{A})$

$$
\begin{aligned}
\vec{J} & =\int d^{3} r \vec{x} \times(\vec{E} \times \vec{B})=\int d^{3} r \vec{x} \times[\vec{E} \times(\vec{\nabla} \times \vec{A})] \\
& =\int d^{3} r\left[E^{j}(\vec{x} \times \vec{\nabla}) A^{j}-\vec{x} \times(\vec{E} \cdot \vec{\nabla}) \vec{A}\right]
\end{aligned}
$$

- integrate by parts (drop surface term)

$$
\vec{J}=\int d^{3} r\left[E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+(\vec{x} \times \vec{A}) \vec{\nabla} \cdot \vec{E}+\vec{E} \times \vec{A}\right]
$$

- drop $2^{\text {nd }}$ term (eq. of motion $\vec{\nabla} \cdot \vec{E}=0$), yielding $\vec{J}=\vec{L}+\vec{S}$ with

$$
\vec{L}=\int d^{3} r E^{j}(\vec{x} \times \vec{\nabla}) A^{j} \quad \vec{S}=\int d^{3} r \vec{E} \times \vec{A}
$$

- note: \vec{L} and \vec{S} not separately gauge invariant
- treat FSI to lowest order in g
\hookrightarrow

$$
\left\langle k_{q}^{i}\right\rangle=-\frac{g}{4 p^{+}} \int \frac{d^{2} \mathbf{b}_{\perp}}{2 \pi} \frac{b^{i}}{\left|\mathbf{b}_{\perp}\right|^{2}}\langle p, s| \bar{q}(0) \gamma^{+} \frac{\lambda_{a}}{2} q(0) \rho_{a}\left(\mathbf{b}_{\perp}\right)|p, s\rangle
$$

with $\rho_{a}\left(\mathbf{b}_{\perp}\right)=\int d r^{-} \rho_{a}\left(r^{-}, \mathbf{b}_{\perp}\right)$ summed over all quarks and gluons
\hookrightarrow SSA related to dipole moment of parton density-density correlations

- similar density-density correlations as appear in multiparton correlations (\rightarrow M.Diehl)
- GPDs (N polarized in $+\hat{x}$ direction): $u \longrightarrow+\hat{y}$ and $d \longrightarrow-\hat{y}$
\hookrightarrow expect density density correlation to show same asymmetry $\left\langle b^{y} \bar{u}(0) \gamma^{+} \frac{\lambda_{a}}{2} u(0) \rho_{a}\left(\mathbf{b}_{\perp}\right)\right\rangle>0$
\hookrightarrow sign of SSA opposite to sign of distortion in position space

Color Decoherence

'Chromodynamic lensing' mechanism for \perp SSA requires long range coherence of color field!

before 'dressing'

active quark 'dressed' with glue

QCD-evolution: long-range color decoherence:

- after 'dressing' itself with a gluon, previously red quark more likely to be blue or green
\hookrightarrow attraction to far-away spectators mostly gone
- only attracted to close-by (high Q^{2}) g from dressing
- high $Q^{2}: q$ at low x likely to have dressed itself with perturbative gluon!
\hookrightarrow 'Chromodynamic lensing' mechanism suppressed for high $Q^{2} \&$ small x ?

sea quarks

- consider pert. \bar{q} from splitting of glue
- $f_{1 T, g}^{\perp}$ expected to be small due to sum rule

$$
\sum_{i \in q, g} \int d x \int d^{2} \mathbf{k}_{\perp} \mathbf{k}_{\perp}^{2} f_{1 T}^{\perp, i}\left(x, \mathbf{k}_{\perp}\right)=0
$$

- expect $f_{1 T, \bar{q}}^{\perp}$ also to be small for pert. \bar{q}

Angular Momentum carried by Quarks

spherically symmetric wave packet has center of momentum off-center:

- relativistic effect \longrightarrow use Dirac wave packet for nucleon

$$
\psi=\binom{f(r)}{\frac{\vec{\sigma} \cdot \vec{p}}{E+M_{N}} f(r)} \chi \quad \text { with } \quad \chi=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

$\int d^{3} r f^{2}(r)=1$, take limit of large 'radius' for wave packet

- evaluate $T_{q}^{0 z}=\frac{i}{2} \bar{q}\left(\gamma^{0} \partial^{z}+\gamma^{z} \partial^{0}\right) q$ in this state
- $\psi^{\dagger} \partial_{z} \psi$ even under $y \rightarrow-y$, i.e. no contribution to $\left\langle y T_{q}^{0 z}\right\rangle$
- use $i \psi^{\dagger} \gamma^{0} \gamma^{z} \partial^{0} \psi=E \psi^{\dagger} \gamma^{0} \gamma^{z} \psi$

$$
\begin{aligned}
\left\langle T^{0 z} y\right\rangle & =E \int d^{3} r \psi^{\dagger} \gamma^{0} \gamma^{z} \psi y=E \int d^{3} r \psi^{\dagger}\left(\begin{array}{cc}
0 & \sigma^{z} \\
\sigma^{z} & 0
\end{array}\right) \psi y \\
& =\frac{2 E}{E+M_{N}} \int d^{3} r \chi^{\dagger} \sigma^{z} \sigma^{y} \chi f(r)(-i) \partial^{y} f(r) y \\
& =\frac{E}{E+M_{N}} \int d^{3} r f^{2}(r) \xrightarrow{R \rightarrow \infty} \frac{1}{2}
\end{aligned}
$$

$\hookrightarrow p$ pol. in $+\hat{x}$ direction has CoM shifted by $\frac{1}{2 M_{N}}$ in $+\hat{y}$ direction!

Angular Momentum carried by Quarks

spherically symmetric wave packet has center of momentum off-center:

- relativistic effect \longrightarrow use Dirac wave packet for nucleon

$$
\begin{gathered}
\psi=\binom{f(r)}{\frac{\vec{\sigma} \cdot \vec{p}}{E+M_{N}} f(r)} \chi \quad \text { with } \quad \chi=\frac{1}{\sqrt{2}}\binom{1}{1} \\
\left\langle T^{0 z} y\right\rangle \xrightarrow{R \rightarrow \infty} \frac{1}{2}
\end{gathered}
$$

$\hookrightarrow p$ pol. in $+\hat{x}$ direction has CoM shifted by $\frac{1}{2 M_{N}}$ in $+\hat{y}$ direction!

origin of 'shift' of CoM

- nucleon polarization: \odot
- counterclockwise momentum density from lower component
- $p \sim \frac{1}{R}$, but $y \sim R$
$\hookrightarrow\left\langle T^{++} y\right\rangle=\mathcal{O}(1)$

Ji decomposition

Ji decomposition

- Δq from polarized DIS
- $J_{q} \equiv \frac{1}{2} \Delta q+L_{q}=$ $\frac{1}{2} \int_{0}^{1} d x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]$ from DVCS
- J_{g} in principle from gluon-GPDs; in practice $J_{g}=\frac{1}{2}-J_{q}$
- spin $1 \longrightarrow$ Goldstein, Liuti, ..

$$
\begin{aligned}
\vec{J}_{\gamma} & =\int d^{3} r \vec{r} \times(\vec{E} \times \vec{B})=\int d^{3} r \vec{r} \times[\vec{E} \times(\vec{\nabla} \times \vec{A})] \\
& =\int d^{3} r\left[E^{j}(\vec{r} \times \vec{\nabla}) A^{j}-\vec{r} \times(\vec{E} \cdot \vec{\nabla}) \vec{A}\right] \\
& =\int d^{3} r\left[E^{j}(\vec{r} \times \vec{\nabla}) A^{j}+(\vec{r} \times \vec{A}) \vec{\nabla} \cdot \vec{E}+\vec{E} \times \vec{A}\right]
\end{aligned}
$$

- replace $2^{\text {nd }}$ term (eq. of motion $\vec{\nabla} \cdot \vec{E}=e j^{0}=e \psi^{\dagger} \psi$), yielding

$$
\vec{J}_{\gamma}=\int d^{3} r\left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi+E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+\vec{E} \times \vec{A}\right]
$$

- $\psi^{\dagger} \vec{r} \times e \vec{A} \psi$ cancels similar term in electron OAM $\psi^{\dagger} \vec{r} \times(\vec{p}-e \vec{A}) \psi$
\hookrightarrow decomposing \vec{J}_{γ} into spin and orbital also shuffles angular momentum from photons to electrons!

Ji decomposition

'pizza tre stagioni'

$$
\begin{aligned}
& \frac{1}{2}=\sum_{q} \frac{1}{2} \Delta q+L_{q}+J_{g} \\
& \frac{1}{2} \Delta q=\frac{1}{2} \int d^{3} x\langle P, S| q^{\dagger}(\vec{x}) \Sigma^{3} q(\vec{x})|P, S\rangle \\
& L_{q}=\int d^{3} x\langle P, S| q^{\dagger}(\vec{x})(\vec{x} \times i \vec{D}) \frac{3}{q(\vec{x})|P, S\rangle} \\
& J_{g}=\int d^{3} x\langle P, S|[\vec{x} \times(\vec{E} \times \vec{B})]^{3}|P, S\rangle \\
& \quad \text { - } i \vec{D}=i \vec{\partial}-g \vec{A}
\end{aligned}
$$

Jaffe decomposition

'pizza quattro stagioni'
light-cone framework \& gauge $A^{+}=0$

$$
\frac{1}{2}=\sum_{q} \frac{1}{2} \Delta q+\mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

$$
\mathcal{L}_{q}=\int d^{3} r\langle P, S| \bar{q}(\vec{r}) \gamma^{+}(\vec{r} \times i \vec{\partial})^{z} q(\vec{r})|P, S\rangle
$$

$$
\Delta G=\varepsilon^{+-i j} \int d^{3} r\langle P, S| \operatorname{Tr} F^{+i} A^{j}|P, S\rangle
$$

$$
\mathcal{L}_{g}=2 \int d^{3} r\langle P, S| \operatorname{Tr} F^{+j}(\vec{x} \times i \vec{\partial})^{z} A^{j}|P, S\rangle
$$

Jaffe decomposition

Jaffe decomposition

- Δq from polarized DIS
- ΔG from $\Delta g(x)$ $\left(\vec{p} \overleftarrow{p} \& \frac{d}{d \ln Q^{2}} \Delta q(x)\right)$
- ΔG gauge invariant! Nonlocal for $A^{+} \neq 0$
- no exp./lattice access to $\mathcal{L}_{q}, \mathcal{L}_{g}$
- only $\mathcal{L} \equiv \mathcal{L}_{g}+\sum_{q} \mathcal{L}_{q}$, by subtraction

$$
\mathcal{L}=\frac{1}{2}-\Delta G-\sum_{q} \frac{1}{2} \Delta q
$$

'pizza quattro stagioni'
light-cone framework \& gauge $A^{+}=0$

$$
\frac{1}{2}=\sum_{q} \frac{1}{2} \Delta q+\mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

$\mathcal{L}_{q}=\int d^{3} r\langle P, S| \bar{q}(\vec{r}) \gamma^{+}(\vec{r} \times i \vec{\partial})^{z} q(\vec{r})|P, S\rangle$
$\Delta G=\varepsilon^{+-i j} \int d^{3} r\langle P, S| \operatorname{Tr} F^{+i} A^{j}|P, S\rangle$
$\mathcal{L}_{g}=2 \int d^{3} r\langle P, S| \operatorname{Tr} F^{+j}(\vec{x} \times i \vec{\partial})^{z} A^{j}|P, S\rangle$

- L_{q} matrix element of

$$
q^{\dagger}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q=\bar{q} \gamma^{0}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q
$$

- \mathcal{L}_{q}^{z} matrix element of $\left(\gamma^{+}=\gamma^{0}+\gamma^{z}\right)$

$$
\left.\bar{q} \gamma^{+}[\vec{r} \times i \vec{\partial}]^{z} q\right|_{A^{+}=0}
$$

- (for $\vec{p}=0)$ matrix element of $\bar{q} \gamma^{z}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q$ vanishes (parity!)
$\hookrightarrow L_{q}$ identical to matrix element of $\bar{q} \gamma^{+}[\vec{r} \times(i \vec{\partial}-g \vec{A})]^{z} q$ (nucleon at rest)
\hookrightarrow even in light-cone gauge, L_{q}^{z} and \mathcal{L}_{q}^{z} still differ by matrix element of $\left.q^{\dagger}(\vec{r} \times g \vec{A})^{z} q\right|_{A^{+}=0}=\left.q^{\dagger}\left(r^{x} g A^{y}-r^{y} g A^{x}\right) q\right|_{A^{+}=0}$

scalar diquark model

- 'mother functions' $\psi_{s}^{S}\left(x, \mathbf{k}_{\perp}\right)$
$\hookrightarrow \mathcal{L}_{q}$ from $\left|\psi_{s}^{S}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}$
- GPDs from overlap integrals of $\psi^{\dagger} \psi$
$\hookrightarrow L_{q}$ from Ji
- $L_{q}=\mathcal{L}_{q}$.

No surprise since $L_{q}-\mathcal{L}_{q} \sim\left\langle q^{\dagger} \vec{r} \times \vec{A} q\right\rangle$ and no \vec{A} in scalar diquark model

- $L_{q}(x) \neq \mathcal{L}_{q}(x)$

M.B. + Hikmat BC, PRD 79, 071501 (2009)

QED for dressed e^{-}in QED

- 'mother functions' $\psi_{s h}^{S}\left(x, \mathbf{k}_{\perp}\right)$
$\hookrightarrow \mathcal{L}_{q}$ from $\left|\psi_{s h}^{S}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}$
- GPDs from overlap integrals of $\psi^{\dagger} \psi$
$\hookrightarrow L_{q}$ from Ji
- $\mathcal{L}_{e}=L_{e}+\frac{\alpha}{4 \pi} \neq L_{e}$
- Wakamatsu-pizza?
- Goldstein-pizza?

Bakker Leader Trueman

Bakker Leader Trueman

$$
J_{q}^{x}=L_{q}^{x}+S_{q}^{x}=\int d^{3} r\left[y T_{q}^{0 z}(\vec{r})-z T_{q}^{0 y}(\vec{r})\right]
$$

BIG small
$\hookrightarrow p$ pol. in $+\hat{x}$ direction has CoM shifted by $\frac{1}{2 M_{N}}$ in $+\hat{y}$ direction!

- for wave packet centered around origin:

$$
J^{x} \sim \frac{1}{2 M_{N}} P_{N} \longrightarrow \infty
$$

\hookrightarrow subtract that infinity

- quark flavor q has CoM shifted by

$$
\begin{aligned}
& \frac{1}{2 M_{N}} \int d x x E\left(x_{q}, 0,0\right) \\
& -J_{q}^{x} \sim \frac{1}{2 M_{N}} \int d x x E\left(x_{q}, 0,0\right) P_{N} \longrightarrow \infty
\end{aligned}
$$

now: QED with electrons

- start from what X.Ji would call \vec{J}_{γ} :

$$
\vec{J}_{\gamma}=\int d^{3} r \vec{x} \times(\vec{E} \times \vec{B})=\int d^{3} r \vec{x} \times[\vec{E} \times(\vec{\nabla} \times \vec{A})]
$$

- integrate by parts

$$
\vec{J}=\int d^{3} r\left[E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+(\vec{x} \times \vec{A}) \vec{\nabla} \cdot \vec{E}+\vec{E} \times \vec{A}\right]
$$

- replace $2^{n d}$ term (eq. of motion $\vec{\nabla} \cdot \vec{E}=e j^{0}=e \psi^{\dagger} \psi$), yielding

$$
\vec{J}_{\gamma}=\int d^{3} r\left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi+E^{j}(\vec{x} \times \vec{\nabla}) A^{j}+\vec{E} \times \vec{A}\right]
$$

- $\psi^{\dagger} \vec{r} \times e \vec{A} \psi$ cancels similar term in electron OAM $\psi^{\dagger} \vec{r} \times(\vec{p}-e \vec{A}) \psi$
\hookrightarrow decomposing \vec{J}_{γ} into spin and orbital also shuffles angular momentum from photons to electrons!

Ji decomposition

$$
\vec{J}=\int d^{3} x\left[\psi^{\dagger} \vec{\Sigma} \psi+\psi^{\dagger} \vec{x} \times(i \vec{\partial}-g \vec{A}) \psi+\vec{x} \times(\vec{E} \times \vec{B})\right]
$$

with $\Sigma^{i}=\frac{i}{2} \varepsilon^{i j k} \gamma^{j} \gamma^{k}$

- Ji does not integrate gluon term by parts, nor identify gluon spin/OAM separately
- Ji-decomposition valid for all three components of \vec{J}, but usually only applied to \hat{z} component, where the quark spin term has a partonic interpretation
$(+)$ all three terms manifestly gauge invariant
$(+)$ DVCS can be used to probe $\vec{J}_{q}=\vec{S}_{q}+\vec{L}_{q}$
(-) quark OAM contains interactions
(-) only quark spin has partonic interpretation as a single particle density

Jaffe/Manohar decomposition

- in light-cone framework \& light-cone gauge $A^{+}=0$ one finds for $J^{z}=\int d x^{-} d^{2} \mathbf{r}_{\perp} M^{+x y}$

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

where $\left(\gamma^{+}=\gamma^{0}+\gamma^{z}\right)$

$$
\begin{aligned}
\mathcal{L}_{q} & =\int d^{3} r\langle P, S| \bar{q}(\vec{r}) \gamma^{+}(\vec{r} \times i \vec{\partial})^{z} q(\vec{r})|P, S\rangle \\
\Delta G & =\varepsilon^{+-i j} \int d^{3} r\langle P, S| \operatorname{Tr} F^{+i} A^{j}|P, S\rangle \\
\mathcal{L}_{g} & =2 \int d^{3} r\langle P, S| \operatorname{Tr} F^{+j}(\vec{x} \times i \vec{\partial})^{z} A^{j}|P, S\rangle
\end{aligned}
$$

Jaffe/Manohar decomposition

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\sum_{q} \mathcal{L}_{q}+\Delta G+\mathcal{L}_{g}
$$

- $\Delta \Sigma=\sum_{q} \Delta q$ from polarized DIS (or lattice)
- ΔG from $\vec{p} \stackrel{\leftarrow}{p}$ or polarized DIS (evolution)
$\hookrightarrow \Delta G$ gauge invariant, but local operator only in light-cone gauge
- $\int d x x^{n} \Delta G(x)$ for $n \geq 1$ can be described by manifestly gauge inv. local op. (\longrightarrow lattice)
- $\mathcal{L}_{q}, \mathcal{L}_{g}$ independently defined, but
- no exp. identified to access them
- not accessible on lattice, since nonlocal except when $A^{+}=0$
- parton net OAM $\mathcal{L}=\mathcal{L}_{g}+\sum_{q} \mathcal{L}_{q}$ by subtr. $\mathcal{L}=\frac{1}{2}-\frac{1}{2} \Delta \Sigma-\Delta G$
- in general, $\mathcal{L}_{q} \neq L_{q} \quad \mathcal{L}_{g}+\Delta G \neq J_{g}$
- makes no sense to 'mix' Ji and JM decompositions, e.g. $J_{g}-\Delta G$ has no fundamental connection to OAM
- light-cone wave function in $e \gamma$ Fock component

$$
\begin{aligned}
\Psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right) & =\sqrt{2} \frac{k^{1}-i k^{2}}{x(1-x)} \phi & \Psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=-\sqrt{2} \frac{k^{1}+i k}{1-x} \\
\Psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right) & =\sqrt{2}\left(\frac{m}{x}-m\right) \phi & \Psi_{-\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)=0
\end{aligned}
$$

- OAM of e^{-}according to Jaffe/Manohar
$\mathcal{L}_{e}=\int_{0}^{1} d x \int d^{2} \mathbf{k}_{\perp}\left[(1-x)\left|\Psi_{+\frac{1}{2}-1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}-\left|\Psi_{+\frac{1}{2}+1}^{\uparrow}\left(x, \mathbf{k}_{\perp}\right)\right|^{2}\right]$
- e^{-}OAM according to Ji $L_{e}=\frac{1}{2} \int_{0}^{1} d x x[q(x)+E(x, 0,0)]-\frac{1}{2} \Delta q$
$\rightsquigarrow \mathcal{L}_{e}=L_{e}+\frac{\alpha}{4 \pi} \neq L_{e}$
- Likewise, computing J_{γ} from photon GPD, and $\Delta \gamma$ and \mathcal{L}_{γ} from light-cone wave functions and defining $\hat{L}_{\gamma} \equiv J_{\gamma}-\Delta \gamma$ yields $\hat{L}_{\gamma}=\mathcal{L}_{\gamma}+\frac{\alpha}{4 \pi} \neq \mathcal{L}_{\gamma}$
- $\frac{\alpha}{4 \pi}$ appears to be small, but here \mathcal{L}_{e}, L_{e} are all of $\mathcal{O}\left(\frac{\alpha}{\pi}\right)$

