Chiral nuclear thermodynamics

Salvatore Fiorilla, Norbert Kaiser, Wolfram Weise *

Technische Universität München Department of Physics T39

Erice September 18 2011

*Work supported in part by BMBF, GSI and the DFG Cluster of Excellence "Origin and Structure of the Universe".

Salvatore Fiorilla, Norbert Kaiser, Wolfram Weise Chiral nuclear thermodynamics

Chiral perturbation theory and nuclear matter

- Nuclear matter: low-density and low-temperature phase of QCD.
- Effective field theory incorporating spontaneous and explicit chiral symmetry breaking: Chiral Perturbation Theory.
- Active degrees of freedom: pions, nucleons and $\Delta(1232)$ -isobars.
- Calculation up to 3-loop order in the free energy density.
- In-medium ChPT: finite density effects. For example at T = 0:
 - Ground state: $|0\rangle$ (non-perturbative vacuum) $\implies |\phi_0\rangle$ (filled Fermi sea)
 - In-medium nucleon propagator:

$$S_F(p) = (\not p + M_N) \left[\frac{i}{p^2 - M_N^2 + i\epsilon} - 2\pi \,\delta(p^2 - M_N^2) \,\theta(k_F - |\mathbf{p}|) \,\theta(p_0) \right]$$

Chiral expansion for nuclear matter

Hierarchy of scales

Long and intermediate distances

Explicit 1π - and 2π -exchange dynamics:

- 2-body terms from N-N interaction.
- 3-body terms incl. Pauli-blocking effects on 2-body terms.

Short-distance physics

Contact terms tuned to reproduce selected properties of nuclear matter:

- Energy minimum: $E/A \simeq -16$ MeV.
- Asymmetry energy: $A(\rho_0) \simeq 34$ MeV.
- o M. Lutz, B. Friman, Ch. Appel, Phys. Lett. B 474 (2000) 7
- o N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A 697 (2002) 255
- o S. Fritsch, N. Kaiser, W. Weise, Phys. Lett. B 545 (2002) 73
- o S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750 (2005) 259

Isospin-symmetric nuclear matter

- First order liquid-gas phase transition: $T_C \simeq 15.1$ MeV.
- At T = 0 compressibility $K(\rho_0) \simeq 300$ MeV.

Isospin-asymmetric nuclear matter

- First order liquid-gas phase transition: $T_C \simeq 6.3$ MeV.
- Energy and pressure at a given density increase in comparison to the symmetric case.

< □ > < 同 > < 三 >

Evolution of saturation point

Proton fraction	Saturation point	
x _n	$ ho_0$ [fm ⁻³]	<i>e</i> ₀ [MeV]
0.5	0.157	-16.03
0.4	0.152	-14.69
0.3	0.137	-10.9
0.2	0.113	-5.24
0.12	0.087	0

• For proton fractions ≤ 0.12 nuclear matter is unbound.

Temperature - density diagram

Liquid-gas transition region:

- Gradually smaller with increasing asymmetry.
- Vanishes at proton fraction ~ 0.05.

Temperature - baryon chemical potential diagram

Liquid-gas transition region:

- Gradually smaller with increasing asymmetry.
- Vanishes at proton fraction $\simeq 0.05$.

Asymmetry free energy

Isospin-asymmetry parameter: δ = ρ_n − ρ_p/ρ_n + ρ_p.
Parabolic law: F̄(ρ, T, δ) = F̄(ρ, T, 0) + δ² A(ρ, T) + O(δ⁴).

イロト イ押ト イヨト イヨト

• Chiral condensate is order parameter of the chiral phase transition:

$\langle ar{q}q angle = 0$	chiral symmetry (Wigner-Weyl realization)
$\langle \bar{q}q \rangle \neq 0$	spontaneously broken chiral symmetry
	(Nambu-Goldstone realization)

• By Hellmann-Feynman Theorem in-medium condensate is

$$\frac{\langle \bar{q}q \rangle(\rho,T)}{\langle \bar{q}q \rangle_0} = 1 - \frac{\rho}{f_{\pi}^2} \left[\frac{\sigma_N}{m_{\pi}^2} \frac{\partial}{\partial M} + \frac{\partial}{\partial m_{\pi}^2} \right] \bar{F}(\rho,T)$$

• N. Kaiser, P. de Homont, W. Weise, Phys. Rev. C 77 (2008)

Chiral condensate

- Linear behaviour: trace of the liquid-gas phase transition.
- Net result of interactions: counteract reduction of condensate due to linear density term.

• Crucial: Δ-isobar contribution stabilizes the condensate!

Chiral condensate with thermal pions

 We add the contribution of the thermal pions to the chiral condensate [†]:

No indication of first order chiral phase transition for $ho \lesssim 2 \,
ho_0$ and $T \lesssim 100 \, \text{MeV}$

[†]N. Kaiser, Phys. Rev. C 59, 2945 (1999)

Salvatore Fiorilla, Norbert Kaiser, Wolfram Weise

- Thermodynamic properties of nuclear matter and chiral condensate from in-medium ChPT at 3-loop order.
- Long-range correlations due to 1π- and 2π-exchange treated explicitly; short-distance dynamics encoded in contact terms.
- Evolution of liquid-gas phase transition region and binding energy with increasing asymmetry.
- No indication of chiral symmetry restoration in nuclear matter for

 $\rho \lesssim 2 \rho_0$ and $T \lesssim 100$ MeV.