Chiral nuclear dynamics with three-body forces

Jeremy W. Holt with N. Kaiser and W. Weise

Technische Universität München Physik Department, T39

"From Quarks and Gluons to Hadrons and Nuclei", Erice, Sicily, 18.09.2011

Nuclear landscape and chiral nuclear interactions

Nuclei near the drip-line

New generation of rare-isotope experiments

Understanding *r*-process nucleosynthesis

Dense stellar objects

Structure of neutron stars

Dynamics of core-collapse supernovae

QCD thermodynamics

Medium dependence of chiral condensate

Implications for QCD phase diagram

Chiral nuclear interactions

Exploit **symmetry structure** of fundamental theory of QCD: **chiral symmetry** and the resulting **separation of scales** arising from its spontaneous breaking

In-medium nucleon-nucleon interactions

Explicit three-nucleon forces become COMPUTATIONALLY PROHIBITIVE

Is there a viable alternative?

Effective, in-medium 2-body interaction from leading-order CHIRAL 3NF

$$\begin{split} V_{3N}^{(2\pi)} &= \sum_{i \neq j \neq k} \frac{g_A^2}{8f_\pi^4} \frac{\vec{\sigma}_i \cdot \vec{q}_i \vec{\sigma}_j \cdot \vec{q}_j}{(\vec{q}_i^2 + m_\pi^2)(\vec{q}_j^2 + m_\pi^2)} F_{ijk}^{\alpha\beta} \tau_i^{\alpha} \tau_j^{\beta} \\ F_{ijk}^{\alpha\beta} &= \delta^{\alpha\beta} \left(-4c_1 m_\pi^2 + 2c_3 \vec{q}_i \cdot \vec{q}_j \right) + c_4 \epsilon^{\alpha\beta\gamma} \tau_k^{\gamma} \vec{\sigma}_k \cdot (\vec{q}_i \times \vec{q}_j) \\ N^3 \text{LO}: \ c_1 &= -0.81, \ c_3 &= -3.2, \ c_4 &= 5.4 \ [\text{GeV}^{-1}] \\ \hline V_{3N}^{(1\pi)} &= -\sum_{i \neq j \neq k} \frac{g_{ACD}}{8f_\pi^4 \Lambda_\chi} \frac{\vec{\sigma}_j \cdot \vec{q}_j}{\vec{q}_j^2 + m_\pi^2} \vec{\sigma}_i \cdot \vec{q}_j \vec{\tau}_i \cdot \vec{\tau}_j \\ c_D(N^3 \text{LO}) &= -0.2 \\ \hline V_{3N}^{(\text{ctt})} &= \sum_{i \neq j \neq k} \frac{c_E}{2f_\pi^4 \Lambda_\chi} \vec{\tau}_i \cdot \vec{\tau}_j \\ c_E(N^3 \text{LO}) &= -0.205 \\ \end{split}$$

Technische Universität Müncher

Partial wave matrix elements

JWH, N. Kaiser, W. Weise, PRC 79 (2009) JWH, N. Kaiser, W. Weise, PRC 81 (2010)

- Large cancellations between components of 2π -exchange 3NF

Increase in attractive tensor force

Anomalously-long half-life of ¹⁴C

Selection rules for allowed Gamow-Teller transition

$$\beta^{-} \qquad {}^{14}C \ (J^{\pi}, T) = (0^{+}, 1)$$
$$\beta^{-} \qquad {}^{14}N \ (J^{\pi}, T) = (1^{+}, 0)$$

- $^{14}\mathrm{C}$ beta decay half-life = **5730 years** $^{\bigstar}$
- Necessary for radiocarbon dating!

Typical p-shell half-lives on the order of MINUTES

ACCIDENTAL CANCELLATION in matrix element

 $M_{GT} = \langle \psi_f || \mathcal{O}(GT) || \psi_i \rangle \approx \pm 0.002$

No satisfactory theoretical explanation

Decay	\overline{Q}	$t_{1/2}$
-	(keV)	(sec)
$\frac{1}{n(\beta^{-})^{1}H}$	782.346	6.166E + 02
$^{3}\mathrm{H}(\beta^{-})^{3}\mathrm{He}$	18.596	3.887E + 08
${}^{6}\text{He}(\beta^{-}){}^{6}\text{Li}$	3507.76	8.067 E - 01
$^{7}\mathrm{Be}(EC)^{7}\mathrm{Li}$	861.835	4.604E + 06
${}^{8}\text{He}(\beta^{-})^{8}\text{Li}$	10653.7	1.110E - 01
$^{8}\text{Li}(\beta^{-})^{8}\text{Be}$	16003.71	8.403E - 01
$^{8}B(\beta^{+})^{8}Be$	17978.5	7.70E - 01
$^{9}\text{Li}(\beta^{-})^{9}\text{Be}$	13606.0	1.783E - 01
${}^{9}\mathrm{C}(\beta^{+}){}^{9}\mathrm{B}$	16497.9	1.265 E - 01
${}^{10}C(\beta^+){}^{10}B$	3647.82	1.9290E + 01
$^{11}\text{Li}(\beta^{-})^{11}\text{Be}$	20675	8.5E - 03
$^{11}\text{Be}(\beta^{-})^{11}\text{B}$	11506.1	1.381E + 01
${}^{11}C(\beta^+){}^{11}B$	1982.20	1.2234E + 03
$^{12}\text{Be}(\beta^{-})^{12$	11707	2.13E - 02
${}^{12}B(\beta^{-}){}^{12}C$	13369.4	2.020E - 02
$^{12}N(\beta^{+})^{12}C$	17338.0	1.1000E - 02
$^{13}\mathrm{B}(\beta^{-})^{13}\mathrm{C}$	13437.2	$1.736E{-}02$
$^{13}N(\beta^{+})^{13}C$	2220.45	5.979E + 02
$^{13}O(\beta^+)^{13}N$	17766.2	8.55 E - 03
$^{14}B(\beta^{-})^{14}C$	20644	1.28E - 02
${}^{14}C(\beta^-){}^{14}N$	156.472	1.807E+11
$^{14}O(\beta^+)^{14}N$	5143.064	7.0606E + 01
${}^{15}\!\mathrm{C}(\beta^-){}^{15}\!\mathrm{N}$	9771.68	2.449E + 00
$^{15}\mathrm{O}(\beta^+)^{15}\mathrm{N}$	2753.95	1.2224E + 02
${ m ^{16}C}(eta^-){ m ^{16}N}$	8012.1	7.47E - 01
$^{16}N(\beta^{-})^{16}O$	10419.1	7.13E + 00
$^{16}N^{*}(\beta^{-})^{16}O$	10539.5	1.571
$^{17}N(\beta^{-})^{17}O$	8680	4.174E + 00
17 Ne $(\beta^+)^{17}$ F	14536	1.093 E - 01
${}^{18}C(\beta^-){}^{18}N$	11810	9.5E - 02
$^{18}N(\beta^{-})^{18}O$	13899	6.24E - 01

[Chou et al., PRC (1993)]

• Too many particles for *ab initio* methods (2009) \rightarrow use **shell model**

Higher-order configurations included perturbatively

 \bullet Ground state of ^{14}N modified strongly by 3NF

Experimental Gamow-Teller strengths

• Charge-exchange reaction: ${}^{14}N(d, {}^{2}He){}^{14}C$ [Negret *et al.*, PRL (2006)]

• DRAMATIC SUPPRESSION of only the GROUND-STATE Gamow-Teller transition

• Challenge to ab-initio many-body methods [P. Maris et al., PRL (2011)]

Nuclear energy density functionals

$$E_{SHF}[\rho,\tau,\vec{J}] = \int d^3x \left[\frac{1}{2M} \tau + \frac{3}{8} t_0 \rho^2 + \frac{1}{16} t_3 \rho^{2+\alpha} + \frac{1}{16} (3t_1 + 5t_2) \rho \tau + \frac{1}{64} (9t_1 - 5t_2) (\vec{\nabla}\rho)^2 - \frac{3}{4} W_0 \rho \vec{\nabla} \cdot \vec{J} + \frac{1}{32} (t_1 - t_2) \vec{J}^2 \right]$$

Hartree-Fock expression for the energy is highly nonlocal

Energy written as a functional of local densities and their derivatives only:

Nucleon density
$$\rho(\vec{x}) = \sum_{j} |\phi_{j}(\vec{x})|^{2}$$
Kinetic density
$$\tau(\vec{x}) = \sum_{j} |\vec{\nabla}\phi_{j}(\vec{x})|^{2}$$
Spin-orbit density
$$\vec{J}(\vec{x}) = \sum_{j} \phi_{j}^{\dagger}(\vec{x})(-i\vec{\nabla} \times \vec{\sigma})\phi_{j}(\vec{x})$$

(1) Vary energy with respect to orbitals to obtain Schrödinger-like equation

Technische Universität Münche

(2) Obtain new orbitals from Schrödinger equation

(3) Iterate until self-consistency is obtained

Binding energies across the periodic table accurate to within ~ 5 MeV

Charge radii, single-particle energies, collective excitations (time-dependent SCMF)

How can we derive successful Skryme energy functionals from microscopic two- and three-body forces?

Technische Universität Müncher

Microscopic energy density functional

$$E_{HF} = \int d\vec{r} \ \mathcal{E}[
ho, au, ec{J}]$$

Derive from density matrix expansion: compare to phenomenological models

General form of energy density up to second order in gradients:

$$\mathcal{E}[\rho,\tau,\vec{J}] = \rho \bar{E}(\rho) + \left[\tau - \frac{3}{5}\rho k_f^2\right] \left[\frac{1}{2M} - \frac{k_f^2}{4M^3} + F_\tau(\rho)\right] + (\vec{\nabla}\rho)^2 F_\nabla(\rho) + \vec{\nabla}\rho \cdot \vec{J}F_{so}(\rho) + \vec{J}^2 F_J(\rho)$$

JWH, N. Kaiser, W. Weise, arXiv:1107.5966

JWH, N. Kaiser, W. Weise, arXiv:1107.5966

★ Realistic Skryme density functionals:

 $F_{
abla} \simeq 50-75 \,\, {
m MeV} \, {
m fm}^5$

★ Empirically, $F_{so} \simeq 90 \,\, {
m MeV} \, {
m fm}^5$

★ Three-nucleon force results in a spin-orbit strength that increases with density

 ${\rm i}$ Pion exchange gives dominant contribution to F_J , particularly at small densities

Quasiparticle interaction in nuclear matter

Strongly-interacting, normal Fermi at low T described in terms of weakly-interacting QUASIPARTICLES

- Quasiparticle lifetime $au \sim (\epsilon - \epsilon_F)^{-2}$

Characterize low-energy excitations about the interacting ground state

$$\mathcal{F}(\vec{p}_1, \vec{p}_2) = f(\vec{p}_1, \vec{p}_2) + f'(\vec{p}_1, \vec{p}_2)\vec{\tau}_1 \cdot \vec{\tau}_2 + [g(\vec{p}_1, \vec{p}_2) + g'(\vec{p}_1, \vec{p}_2)\vec{\tau}_1 \cdot \vec{\tau}_2]\vec{\sigma}_1 \cdot \vec{\sigma}_2$$

Legendre polynomial expansion:

$$f(\vec{p_1}, \vec{p_2}) = \sum_L f_L P_L(\cos \theta)$$
$$f'(\vec{p_1}, \vec{p_2}) = \sum_L f'_L P_L(\cos \theta)$$
$$\vdots$$

- Symmetric nuclear matter: Bulk equilibrium properties, collective excitations

Neutron matter: Magnetic susceptibility, response to weak probes: neutrino scattering and absorption

Role of three-nucleon forces?

Technische Universität München

 $(1^{st} + 2^{nd} \text{ order } 2NF) + (1^{st} \text{ order } 3NF)$

$$V_{\text{N3LO}}^{(1+2)} \quad \left(k_F = 1.33 \text{ fm}^{-1}\right)$$

$$\frac{l}{0} \frac{F_l}{-1.64} \frac{G_l}{0.35} \frac{F_l'}{1.39} \frac{G_l'}{1.59}$$

$$\frac{1}{1} \frac{-0.13}{0.50} \frac{0.58}{0.58} \frac{0.47}{0.47}$$

$$\begin{aligned} V_{\rm N3LO}^{(1+2)} + V_{3N}^{(1)} & \left(k_F = 1.33 \text{ fm}^{-1}\right) \\ \frac{l}{0} & F_l & G_l & F_l' & G_l' \\ \hline 0 & -0.15 & 0.35 & 1.36 & 1.20 \\ \hline 1 & -0.22 & 0.21 & 0.29 & 0.24 \end{aligned}$$

	Observables	Empirical	Observables		
	$\frac{M^*}{M_N} = 1 + \frac{F_1}{3} = 0.96$	[0.7 - 1.0]	$\frac{M^*}{M_N} = 1 + \frac{F_1}{3} = 0.93$		
	$\mathcal{K} = \frac{3\hbar^2 k_F^2}{M^*} (1 + F_0) = -148 \text{ MeV}$	$[200-300~{\rm MeV}]$	$\mathcal{K} = \frac{3\hbar^2 k_F^2}{M^*} (1 + F_0) = 203 \text{ MeV}$		
	$\beta = \frac{\hbar^2 k_F^2}{6M^*} (1 + F_0') = 31 \text{ MeV}$	$[30-36{ m MeV}]$	$\beta = \frac{\hbar^2 k_F^2}{6M^*} (1 + F_0') = 31 \ {\rm MeV}$		
	$\delta g_l = \frac{F_1' - F_1}{3(1 + F_1/3)} = 0.12$	[0.20 - 0.26]	$\delta g_l = rac{F_1' - F_1}{3(1 + F_1/3)} = 0.11$		
	$g'_{NN} = 0.67$	[0.6-0.7]	$g'_{NN} = 0.52$		
1					

€

JWH, N. Kaiser, W. Weise, to appear in NPA

Conclusions/Outlook

• Chiral effective field theory used to connect fundamental theory of strong interactions to the nuclear force and nuclear structure physics

 Implementation of three-nucleon forces a *frontier* in medium-mass and heavy nuclei

Facilitated by density-dependent NN interactions: Nuclear shell model calculation for carbon-14 lifetime

Microscopic energy density functionals: binding energies and charge radii across the periodic table

Quasiparticle interaction with chiral two- and three-nucleon interactions

- Satisfactory description of bulk nuclear matter properties

- Future: neutron star matter

