Muon g - 2 and the pion form factor in lattice QCD

International School of Nuclear Physics 33rd course From Quarks and Gluons to Hadrons and Nuclei Erice-Sicily September 16-24, 2011

Andreas Jüttner CERN Theory Division

Introduction: elm. pion FF and $a_{\mu}^{\rm LO, had}$

Some cartoons:

Introduction: elm. pion FF and $a_{\mu}^{\rm LO,had}$

Some cartoons:

$$a_{\mu}^{\mathsf{LHV}} \propto \int\limits_{0}^{\infty} d\mathsf{Q}^{2} \mathcal{K}(\mathsf{Q}^{2}) \Big(\mathsf{\Pi}(\mathsf{Q}^{2}) - \mathsf{\Pi}(0) \Big)$$

$$f^{\pi\pi}(q^2)(
ho'+
ho)=\langle\pi(
ho')|j^{
m elm}|\pi(
ho)
angle$$

Introduction: elm. pion FF and $a_{\mu}^{ m LO,had}$

Some cartoons:

pion form factor

$$a_{\mu}^{\text{LHV}} \propto \int\limits_{0}^{\infty} dQ^2 K(Q^2) \Big(\Pi(Q^2) - \Pi(0) \Big) \qquad f^{\pi\pi}$$

$$\pi^{\pi\pi}(q^2)(p'+p) = \langle \pi(p')|j^{
m elm}|\pi(p)
angle$$

non-perturbative QCD-contributions to both processes

- talks by Tobias Goecke and Christian Fischer for analytical approaches
- this talk: lattice QCD in principle a well defined problem in field Euclidean field theory in practice brute force neither feasible nor nice new ideas in the following
- Mainz group: Bastian Brandt, Michele Della Morte, Benjamin Jäger, A.J., Hartmut Wittig

Motivation

 lattice QCD has seen continous progress (e.g. FLAG summary for low energy physics results) Eur.Phys.J. C71 (2011) 1695, arXiv:1011.4408

- a number of yet unsolved obstacles, some of which affect a_{μ}^{LHV} and $f^{\pi\pi}$
- in particular for a_{μ}^{LHV} the impact on particle physics potentially huge: $(a_{\mu}^{\exp} - a_{\mu}^{\text{th}}) \times 10^{-10} = 29(9)$ while $a_{\mu}^{\text{LHV}} = 690(5)$ according to Jegerichner and Nyffeler, Physics Reports 477(209)1-110, arXiv:0902.3360 (of similar importance: light-by-light scattering but not covered here)

Lattice QCD

What is ...?

	QCD
Nc	3
N _f , fundamental	1+1+1+1+1+1
SU(2) iso-spin brk.	~
m_{π}	135MeV
V	∞
а	0

Lattice QCD

What is ...?

	QCD	Lattice QCD
Nc	3	3
N_{f} , fundamental	1+1+1+1+1+1	0, 2, 2+1, 2+1+1
SU(2) iso-spin brk.	v	×
m_{π}	135MeV	$\lesssim m_\pi^{ m sim}$
V	∞	2-4fm
а	0	0.05-0.1fm

for $a_{\mu}^{ ext{LHV}}$ and $f^{\pi\pi}(q^2)$ severe systematic effects due to

- finite volume
- unphysically heavy pion mass

in the finite lattice volume hadron momenta are discrete: p
 ² = 2π/L n
 ² → hadron matrix elements can only be computed for these Fourier momenta:

in the finite lattice volume hadron momenta are discrete: p
 ^{2π} L
 ⁿ
 [→] hadron matrix elements can only be computed for these Fourier momenta:

pion form factor in $N_f = 2 + 1$ lattice QCD by RBC/UKQCD

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

in the finite lattice volume hadron momenta are discrete: p
 ²π n
 ¹ → hadron matrix elements can only be computed for these Fourier momenta:

Tuning the fermion boundary conditions allows to induce arbitrary hadron momenta: (partially) twisted boundary conditions Bedague PLB539(2004), Dividis et al., PLB 595 (2004) 408, Bedague, Chen, PLB 616:208-214,2005, Sachrajda, Viladoro, PLB 609:73-85,2005, ...

Tuning the fermion boundary conditions allows to induce arbitrary hadron momenta: (partially) twisted boundary conditions Bedaque PLB539(2004), Dividis et al., PLB 595 (2004) 408, Bedaque, Chen, PLB 616:208-214,2005, Sachrajda, Viladoro, PLB 609:73-85,2005, ...

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

Tuning the fermion boundary conditions allows to induce arbitrary hadron momenta: (partially) twisted boundary conditions Bedaque PLB539(2004), Dividis et al., PLB 595 (2004) 408, Bedaque, Chen, PLB 616:208-214,2005, Sachrajda, Viladoro, PLB 609:73-85,2005, ...

UKQCD JHEP 05(2007)016, JHEP 0807(2008)112

Tuning the fermion boundary conditions allows to induce arbitrary hadron momenta: (partially) twisted boundary conditions Bedaque PLB539(2004), Dividis et al., PLB 595 (2004) 408, Bedaque, Chen, PLB 616:208-214,2005, Sachrajda, Viladoro, PLB 609:73-85,2005, ...

CLS preliminary, plot by Benjamin Jäger, Mainz

- to date no single simulation of a^{LHV} and f^{ππ}(q²) with phyiscal quark masses exists
- for making a *prediction* at the physical point in LQCD one resorts to extrapolations in the quark mass based on chiral perturbation theory a_{μ}^{LHV}

$$f^{\pi\pi}(q^2)$$
 $\pi \stackrel{\stackrel{\stackrel{\scriptstyle}{\longrightarrow}}}{\longrightarrow} \pi + \pi \stackrel{\stackrel{\stackrel{\scriptstyle}{\longrightarrow}}{\longrightarrow} \pi}{\longrightarrow} \pi$

- to date no single simulation of a^{LHV} and f^{ππ}(q²) with phyiscal quark masses exists
- for making a *prediction* at the physical point in LQCD one resorts to extrapolations in the quark mass based on chiral perturbation theory a_{μ}^{LHV} π + ρ

• it is found that the ρ contribution dominates

- to date no single simulation of a^{LHV} and f^{ππ}(q²) with phyiscal quark masses exists
- for making a *prediction* at the physical point in LQCD one resorts to extrapolations in the quark mass based on chiral perturbation theory a_{μ}^{LHV} π + ρ

$$f^{\pi\pi}(q^2) \qquad \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi + \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi + \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi$$

- $\bullet\,$ it is found that the ρ contribution dominates
- not clear whether χ PT applicable at all or in which kinematical range
- empirically pole dominance seems to work quite well but it is a model

- to date no single simulation of a^{LHV} and f^{ππ}(q²) with phyiscal quark masses exists
- for making a *prediction* at the physical point in LQCD one resorts to extrapolations in the quark mass based on chiral perturbation theory a_{μ}^{LHV} π + ρ

$$f^{\pi\pi}(q^2) \qquad \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi + \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi + \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi$$

- it is found that the ρ contribution dominates
- not clear whether χ PT applicable at all or in which kinematical range
- empirically pole dominance seems to work quite well but it is a model
- currently only model independent way out: simulate directly with physical pion masses

- to date no single simulation of a^{LHV} and f^{ππ}(q²) with phyiscal quark masses exists
- for making a *prediction* at the physical point in LQCD one resorts to extrapolations in the quark mass based on chiral perturbation theory a_{μ}^{LHV} π + ρ

$$f^{\pi\pi}(q^2) \qquad \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi + \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi + \pi \underbrace{\stackrel{\flat \gamma}{\longrightarrow}}_{\pi} \pi$$

- it is found that the ρ contribution dominates
- not clear whether χ PT applicable at all or in which kinematical range
- empirically pole dominance seems to work quite well but it is a model
- currently only model independent way out: simulate directly with physical pion masses (i.e. wait)

Difficulties (and solutions): disconnected diagrams

$$\langle j^{\mu}j^{\nu}\rangle$$
 "=" $\langle \mu \overset{q}{\longleftarrow} \nu \rangle + \langle \mu \overset{q}{\longleftarrow} \overset{q}{\longleftarrow} \nu \rangle$

Difficulties (and solutions): disconnected diagrams

- since simulations iso-spin symmetric here only relevant for a^{LHV}_u
- can be done, but numerically expensive and therefore neglected in all current simulations!!

Difficulties (and solutions): disconnected diagrams

- since simulations iso-spin symmetric here only relevant for a^{LHV}_µ
- can be done, but numerically expensive and therefore neglected in all current simulations!!
- new technique allows their prediction in chiral perturbation theory; crude estimate at NLO: -10% shift in VP $\Pi(q^2)$

Della Morte & A.J. JHEP 1011 (2010) 154, arXiv:1009.3783

Summary of difficulties

- ✓ momentum resolution (twisted boundary conditions)
- X mass dependence (extrapolation must be avoided)
 - ? disconnected diagrams (they are small and we have a rough estimate)

Summary of difficulties

- ✓ momentum resolution (twisted boundary conditions)
- X mass dependence (extrapolation must be avoided)
 - ? disconnected diagrams (they are small and we have a rough estimate)

Remainder: Status of ongoing calculations

CLS preliminary, plot by Bastian Brandt, Mainz, arXiv:1109.0196

цц

CLS preliminary, plot by Bastian Brandt, Mainz, arXiv:1109.0196

CLS preliminary, plot by Bastian Brandt, Mainz, arXiv:1109.0196

 all collaborations try to extrapolate the lattice data using χPT or some model example here ETM Phys.Rev. D79 (2009) 074506, arXiv:0812.4042

Summary $f^{\pi\pi}(q^2)$ - FLAG report

- G. Colangelo, S. Dürr, A. J., L. Lellouch, H. Leutwyler, V. Lubicz, S. Necco, C. Sachrajda, S. Simula, A. Vladikas, U. Wenger, H. Wittig Eur.Phys.J. C71 (2011) 1695, arXiv:1011.4408
- \rightarrow quantities we consider: m_u , m_d , m_s , $f_+(0)$, f_K/f_{π} , B_K , NLO LEC's, potentially more in the future

and satures and sature									
Collaboration	N _f	lqn _d	chira	¹¹ lo ₀	finite	$< r^2 >_V^{\pi} [\text{fm}^2]$	$c_V (\text{GeV}^{-4})$	$\bar{\ell}_6$	
RBC/UKQCD 08A LHP 04	2+1 2+1	A A	•	:	*	0.418(31) 0.310(46)		12.2(9) —	
JLQCD/TWQCD 09 ETM 08 QCDSF/UKQCD 06A	2 2 2	A A A	*		•	0.409(23)(37) 0.456(30)(24) 0.441(19)(56)(29)	3.22(17)(36) 3.37(31)(27) —	11.9(0.7)(1.0) 14.9(1.2)(0.7) —	
BCT 98 NA7 86 GL 84						0.437(16) 0.439(8)	3.85(60)	16.0(0.5)(0.7) 16.5(1.1)	

- only twisted boundary conditions allow for model-independent extraction of the charge radius (derivative at $q^2 = 0$)
- a *final* word on the lattice on *f^{ππ}(q²)* musn't depend on *χ*PT in the way current results do

Status a_{μ}^{LHV}

plots by Benjamin Jäger, Mainz, CLS-collaboration

Status a_{μ}^{LHV}

plots by Benjamin Jäger, Mainz, CLS-collaboration

• twisting helps - many more data points in q^2

plots by Benjamin Jäger, Mainz, CLS-collaboration

twisting helps - many more data points in q²

Status a_{μ}^{LHV}

plots by Benjamin Jäger, Mainz, CLS-collaboration

$$a_{\mu}^{\mathsf{LHV}} \propto \left(\frac{\alpha}{\pi}\right)^2 \int\limits_{0}^{\infty} dQ^2 K(Q^2) \Big(\Pi(Q^2) - \Pi(0) \Big)$$

- twisting helps many more data points in q²
- fit raw lattice data to various ansätze (pole, polynomial, Padé)
- match with PT (vary matching point)
- integrate: fold with QED PT

Status a_{μ}^{LHV}

a_{μ}^{LHV} in $N_f = 2$ flavour QCD

(thanks to Dru Renner for providing ETM's data)

Status a_{μ}^{LHV}

a_{μ}^{LHV} in $N_f = 2$ flavour QCD

(thanks to Dru Renner for providing ETM's data)

• $m_{\pi} \neq m_{\pi}^{\text{phys}}$ in all simulations (ETM divide out ρ -pole and they then extrapolate linearly in $m_{\pi^{+}}^{2}$ arXiv:1103.4818)

Status a_{μ}^{LHV}

a_u^{LHV} in $N_f = 2 + 1$ flavour QCD

• $m_{\pi} \neq m_{\pi}^{\text{phys}}$ in all simulations

parameterising the mass dependence

ETM arXiv:1103.4818

UKQCD arXiv:1107.1497

Numbers

Collaboration	N _f	$a_\mu^{ m LHV}/10^{-10}$
UKQCD arXiv:1107.1497	2+1	641(33)(32)
ETM arXiv:1103.4818	2	572(16)
e.g. Jegerlehner & Nyffeler Physics Reports 477(2009)1-110		690(5)

(for older efforts see: Aubin and Blum, Phys.Rev. D75 (2007) 114502, hep-lat/0608011 QCDSF, Nucl.Phys. B688 (2004) 135-164 hep-lat/0312032)

TODO:

- stabilise momentum depdendence by using twisting
- compute contribution of disconnected diagrams
- simulate closer/at the physical pion
- iso-spin breaking effects?

Summary

- recent summaries provide an impressive account of the advanced status of lattice QCD (FLAG and Laiho, Lunghi, van de Water Phys.Rev. D81 (2010) 034503, arXiv:0910.2928)
- efforts to predict f^{ππ}(q²) and a^{LHV}_μ are still struggling to meet phenomenologists/experimentalist expectations/needs
- there has been progress:
 - twisted boundary conditions
 - estimates for the disconnected diagrams
 - simulations closer to the physical point
- for a^{LHV}_μ ETM and RBC have recently published status reports and the Mainz group will soon present their results
- for $f^{\pi\pi}(q^2)$ Mainz will also soon provide new results