QCD at Finite Temperature and Density in a functional approach

Jan Lücker

JLU Gießen

September 18, 2011

Partly published in C. S. Fischer, JL, J. A. Mueller, Phys.Lett. B702 (2011) 438-441

The phase diagram of QCD

Dyson-Schwinger equations

Derive from generating functional Z_{QCD} :

+ DSEs for all higher *n*-point functions

Order parameters: chiral symmetry breaking

Quark DSE

$$S^{-1} = Z_2 S_0^{-1} + \Sigma$$

 \Rightarrow Quark condensate:

$$\langle \bar{\psi}\psi \rangle = \text{Tr}[S]$$

 \Rightarrow chiral symmetry breaking

Order parameters: confinement

Dressed Polyakov loop:

$$\Sigma_{\pm 1} = \int rac{darphi}{2\pi} e^{\mp iarphi} \langle ar{\psi}\psi
angle_arphi$$

Reduces to (conjugated) Polyakov loop as $m \to \infty$ \Rightarrow confinement/deconfinement

C. Gattringer, Phys. Rev. Lett. 97 (2006)

F. Synatschke, A. Wipf, C. Wozar, Phys. Rev. D75 (2007)

E. Bilgici, F. Bruckmann, C. Gattringer, C. Hagen, Phys. Rev. D77 (2008)

Truncation scheme

Vertex Ansatz:

$$\Gamma_{\mu}(\boldsymbol{p},\boldsymbol{k};\boldsymbol{q}) = \gamma_{\mu}\cdot\Gamma(\boldsymbol{p}^2,\boldsymbol{k}^2,\boldsymbol{q}^2)\cdot\left(\delta_{\mu,4}rac{C(\boldsymbol{p})+C(\boldsymbol{q})}{2}+\delta_{\mu,i}rac{A(\boldsymbol{p})+A(\boldsymbol{q})}{2}
ight)$$

Program for the gluon:

- Step 1 Quenched QCD
- Step 2 Unquenching with HTL
- Step 3 Unquenching with dressed quarks

Quenched QCD

 \Rightarrow from lattice QCD (Fischer, Maas, Mueller EPJ C68)

Quenched QCD

 \Rightarrow Chiral and deconfinement transitions at T_c from the lattice

Unquenching QCD with HTL

Bare quarks \Rightarrow Hard Thermal Loop approximation ($N_f = 2$)

Unquenched QCD with HTL: phase diagram

Fischer, JL, Mueller PLB702

Coinciding chiral and deconfinement transitions, $\mu_E/T_E \approx 3$

Compare: PQM model

Herbst, Pawlowski, Schaefer, arXiv:1008.0081

Both models use HTL quark loops, similar results.

Unquenched QCD with dressed quarks

Jan Lücker, Erice September 18 2011

Slide 11 / 14

Screening mass contribution

$$m_{th}^2 = \Pi_L(0)/2$$

 \Rightarrow Back-coupling leads to steeper crossover

Phase diagram

 \Rightarrow CEP moves to smaller μ , $\mu_E/T_E \approx 1.7$

Summary & Outlook

- Quenched gluon from lattice
- Quark loop moves CEP to larger μ (comparable to PQM)
- Deconfinement coincides with chiral symmetry restoration
- Back-coupling quark and gluon moves CEP to smaller μ

Coming next:

- $N_f = 2 + 1 \rightarrow$ better comparison to lattice QCD
- Improved vertex: hadronic back reaction

Dual condensates I

The dual condensates^{1,2,3}:

$$\Sigma_n = \int \frac{d\varphi}{2\pi} e^{-i\varphi n} \langle \bar{\psi}\psi \rangle_{\varphi}$$

where $\langle \bar{\psi} \psi \rangle_{\varphi}$ is a condensate for shifted boundary conditions:

$$\psi(ec{x},1/ extsf{T})=e^{iarphi}\psi(ec{x},0) \quad arphi\in[0,2\pi]$$

- Σ_n corresponds to loops that wind n-times around the time direction
- Spatial fluctuations are included but 1/m suppressed

¹C. Gattringer, Phys. Rev. Lett. **97** (2006)
 ²F. Synatschke, A. Wipf, C. Wozar, Phys. Rev. **D75** (2007)
 ³E. Bilgici, F. Bruckmann, C. Gattringer, C. Hagen, Phys. Rev. **D77** (2008)

Dual condensates II

- \Rightarrow $\Sigma_{\pm 1}$ is the Polyakov loop for $m
 ightarrow \infty$
- $\Sigma_{+1} \rightarrow dressed$ Polyakov loop
- $\Sigma_{-1} \rightarrow$ conjugated dressed Polyakov loop
- \Rightarrow order parameters for confinement, accessible by functional methods
 - small in the confined phase
 - **large** in the quark-gluon plasma
 - crossover, since finite quark masses are used

Quark-gluon vertex

$$\Gamma_{\mu}(p,k;q) = \gamma_{\mu} \cdot \Gamma(p^2,k^2,q^2) \cdot \left(\delta_{\mu,4} \frac{C(p) + C(q)}{2} + \delta_{\mu,i} \frac{A(p) + A(q)}{2}\right)$$

HTL:
$$\Gamma(p^2, k^2, q^2) = \frac{d_1}{d_2 + q^2} + \frac{q^2}{\Lambda^2 + q^2} \left(\frac{\beta_0 \alpha(\mu) \ln[q^2/\Lambda^2 + 1]}{4\pi}\right)^{2\delta}$$

Dressed: $\Gamma(p^2, k^2, q^2) = \left(1 + \frac{a}{q^2 + b}\right) \left(1 + \frac{a}{p^2 + k^2 + b}\right)$

Curvature at $\mu = 0$

$$\frac{T_c(\mu)}{T_c(0)} = 1 - \kappa \left(\frac{\mu}{T}\right)^2 + \mathcal{O}((\mu/T)^4)$$

Lattice, $N_f = 2 + 1$: $\kappa \approx 0.06$ Karsch et.al Phys. Rev. D83 (2011) 014504 This work, $N_f = 2$: $\kappa \approx 0.15$ $N_f = 2 + 1$ in progress...