Experimental approaches for extracting in-medium properties of hadrons from photo nuclear reactions

Volker Metag
II. Physikalisches Institut,
Universität Gießen, Germany

- motivation
- In-medium properties of mesons from the measurement of
 - a.) meson line shape
 - b.) the transparency ratio
 - c.) the meson momentum distribution
 - d.) the excitation function for photoproduction off nuclei
- CBELSA/TAPS (Bonn) and Crystal Ball/TAPS (Mainz) results on in-medium properties of the <u>ω meson</u>
- in-medium properties of the <u>n</u> meson (talk by M. Nanova, Thursday 18:00)
- summary and conclusions

33rd International School of Nuclear Physics Erice, Sicily, Sept. 16-24, 2011

hadron masses

J.Wambach

- QCD-vacuum: complicated structure characterized by condensates
- in the nuclear medium: condensates are changed
- → change of the hadronic excitation energy spectrum

V. Bernard and U.-G. Meißner, NPA 489 (1988) 647

G.E.Brown and M. Rho,
$$\frac{m^*}{m} \approx \frac{\left\langle \overline{q}q \right\rangle^*}{\left\langle \overline{q}q \right\rangle} \approx 0.8 \left(\rho \approx \rho_0\right)$$
 PRL 66 (1991) 2720

T.Hatsuda and S. Lee,
$$\frac{\mathbf{m}_{\mathrm{V}}^{*}}{\mathbf{m}_{\mathrm{V}}} = \left(1 - \alpha \frac{\rho_{\mathrm{B}}}{\rho_{\mathrm{0}}}\right)$$
; $\alpha \approx 0.18$ PRC 46 (1992) R34

⇒ widespread theoretical and experimental activities to search for in-medium modifications of hadrons

drop of ρ,ω mass by ≈ 10% at average nuclear density of 0.6 ρ₀

drop of ρ,ω mass by ≈ 10% at average nuclear density of 0.6 ρ₀

structure in spectral function due to coupling to baryon resonances

drop of ρ,ω mass by ≈ 10% at average nuclear density of 0.6 ρ0

structure in spectral function due to coupling to baryon resonances

 broadening of ω spectral function due to inelastic channels

drop of ρ,ω mass by ≈ 10% at average nuclear density of 0.6 ρ0

structure in spectral function due to coupling to baryon resonances

 broadening of ω spectra function due to inelastic channels

experimental task: search for

mass shift?
broadening?
structures?

of hadronic spectral function

- 1. Measurement of meson line shape: $M \rightarrow X_1 + X_2$
 - \Rightarrow in-medium mass shift ? broadening ? structures ? $\mu_{\rm H}(\rho,\vec{\rm p}) = \sqrt{({\rm p_1} + {\rm p_2})^2}$

- 1. Measurement of meson line shape: $M \rightarrow X_1 + X_2$
 - \Rightarrow in-medium mass shift ? broadening ? structures ? $\mu_{\rm H}(\rho,\vec{p}) = \sqrt{(p_1 + p_2)^2}$
- ensure that decays occur in the medium: select shortlived mesons: decay length $s = \beta \gamma \cdot c\tau$ comparable to nuclear dimensions

for
$$\beta \gamma = \frac{p}{mc} \approx 1$$
 s ≈ 1.3 fm (ρ) ; 23 fm (ω) ; 46 fm (ϕ)

cut on low meson momenta for ω and ϕ mesons

- 1. Measurement of meson line shape: $M \rightarrow X_1 + X_2$
 - \Rightarrow in-medium mass shift ? broadening ? structures ? $\mu_{\rm H}(\rho,\vec{\rm p}) = \sqrt{({\rm p}_1 + {\rm p}_2)^2}$
- ensure that decays occur in the medium: select shortlived mesons: decay length $s = \beta \gamma \cdot c\tau$ comparable to nuclear dimensions

for
$$\beta \gamma = \frac{p}{mc} \approx 1$$
 s ≈ 1.3 fm (ρ) ; 23 fm (ω) ; 46 fm (ϕ)

cut on low meson momenta for ω and ϕ mesons

• avoid distortion of 4-momentum vectors by final state interactions \Rightarrow dilepton spectroscopy: ρ , ω , $\phi \rightarrow e^+e^-$

disadvantage: branching ratio ≈ 10⁻⁴ – 10⁻⁵

decay mode used in our experiments: $\omega \rightarrow \pi^0 \gamma \rightarrow \gamma \gamma \gamma$ br=8.9%

- 1. Measurement of meson line shape: $M \rightarrow X_1 + X_2$
 - \Rightarrow in-medium mass shift ? broadening ? structures ? $\mu_{\rm H}(\rho,\vec{\rm p}) = \sqrt{({\rm p_1} + {\rm p_2})^2}$
- ensure that decays occur in the medium: select shortlived mesons: decay length $s = \beta \gamma \cdot c\tau$ comparable to nuclear dimensions

for
$$\beta \gamma = \frac{p}{mc} \approx 1$$
 s ≈ 1.3 fm (ρ) ; 23 fm (ω) ; 46 fm (ϕ)

cut on low meson momenta for ω and ϕ mesons

• avoid distortion of 4-momentum vectors by final state interactions \Rightarrow dilepton spectroscopy: ρ , ω , $\phi \rightarrow e^+e^-$

disadvantage: branching ratio ≈ 10⁻⁴ – 10⁻⁵

decay mode used in our experiments: $\omega \rightarrow \pi^0 \gamma \rightarrow \gamma \gamma \gamma$ br = 8.9%

sensitive to nuclear density at production point !!!!

2. Measurement of the <u>transparency ratio</u>: $T_A = \frac{\sigma_{\gamma A \to VX}}{A \cdot \sigma_{\gamma N \to VX}}$

production probability per nucleon within nucleus compared to production probability on free nucleon

⇒ absorption ⇒ in-medium width; applicable to any meson lifetime

sensitive to nuclear density at production point!!!!

- 2. Measurement of the <u>transparency ratio</u>: $T_A = \frac{\sigma_{\gamma A \to VX}}{A \cdot \sigma_{\gamma N \to VX}}$
 - production probability per nucleon within nucleus compared to production probability on free nucleon
 - ⇒ absorption ⇒ in-medium width; applicable to any meson lifetime
- 3. Measurement of the <u>momentum distribution</u> of the mesons. In case of a dropping in-medium mass: when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy; applicable to any meson lifetime

sensitive to nuclear density at production point!!!!

- 2. Measurement of the <u>transparency ratio</u>: $T_A = \frac{O_{\gamma A \to VX}}{A \cdot O_{\gamma N \to VX}}$
 - production probability per nucleon within nucleus compared to production probability on free nucleon
 - ⇒ absorption ⇒ in-medium width; applicable to any meson lifetime
- 3. Measurement of the <u>momentum distribution</u> of the mesons. In case of a dropping in-medium mass: when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy; applicable to any meson lifetime
- 4. Measurement of the excitation function
 - \Rightarrow in-medium mass shift, broadening for given \sqrt{s} higher meson yield in case of dropping mass

Experimental setups

ω in-medium width

In-medium ω = quasi-particle; properties reflect interaction with the medium; additional inelastic channels removing ω -mesons, e.g. $ωN \rightarrow π$ N \rightarrow shortening of ω -lifetime; increase in width in-medium ω inelastic width proportional to ω absorption: $\Gamma(ρ, |\overrightarrow{p_{₀}}|) ∝ ρνσ_{abs}$

ω in-medium width

In-medium ω = quasi-particle; properties reflect interaction with the medium; additional inelastic channels removing ω -mesons, e.g. $ωN \rightarrow π$ N \rightarrow shortening of ω -lifetime; increase in width in-medium ω inelastic width proportional to ω absorption: $\Gamma(ρ, |\vec{p}_{Φ}|) \propto ρνσ_{abs}$

comparison to data $\Gamma(\rho_0, <|\vec{p}_0| > \approx 1.1 \text{ GeV/c}) \approx 130-150 \text{ MeV}$

ω is broadened in the medium by a factor ≈16!! in-medium ω width comparable to free ρ width !!

M. Kotulla et al., PRL 100 (2008) 192302

$ω \rightarrow π^0 γ$ lineshape analysis

Main problem: background subtraction

$ω \rightarrow π^0 γ$ lineshape analysis

→ Systematic uncertainties due to different background subtraction approaches

ω lineshape analysis ($E_v = 900 - 1300 \text{ MeV}$)

no significant structure in spectral function; signal on Nb slightly broader than on C, LH_2 ; consistent with in-medium broadening of ω

ω lineshape analysis ($E_v = 900 - 1300 \text{ MeV}$)

no significant structure in spectral function; signal on Nb slightly broader than on C, LH_2 ; consistent with in-medium broadening of ω

Shift only scenario less likely, limited sensitivity to in-medium scenarios

- lineshape analysis sensitive to background subtraction:
 - M. Kaskulov, E. Hernandez, E.Oset, EPJA 31 (2007) 245
 - D. Trnka et al. PRL 94 (2005) 192303;
 - M. Nanova et al., PRC 82 (2010) 035209; EPJA 47 (2011) 16;

- lineshape analysis sensitive to background subtraction:
 - M. Kaskulov, E. Hernandez, E.Oset, EPJA 31 (2007) 245
 - D. Trnka et al. PRL 94 (2005) 192303;
 - M. Nanova et al., PRC 82 (2010) 035209; EPJA 47 (2011) 16;
- lineshape sensitive to density at decay point; only ≈20% of ω decays occur at densities > 0.1ρ₀ even for for p₀< 500 MeV/c

- lineshape analysis sensitive to background subtraction:
 - M. Kaskulov, E. Hernandez, E.Oset, EPJA 31 (2007) 245
 - D. Trnka et al. PRL 94 (2005) 192303;
 - M. Nanova et al., PRC 82 (2010) 035209; EPJA 47 (2011) 16;
- lineshape sensitive to density at decay point; only ≈20% of ω decays occur at densities > 0.1ρ₀ even for for p₀< 500 MeV/c
- experimentally observed mass distribution = convolution of spectral function with branching ratio into channel being studied

$$\frac{d\sigma_{H\to X_1X_2}}{d\mu} \sim A(\mu) \cdot \frac{\Gamma_{H\to X_1X_2}}{\Gamma_{tot}(\mu)}$$
 F. Eichstaedt et al., Prog. Theo. Phys. Suppl. 168 (2007) 495

ω yield reduced by increase of in-medium width $(\Gamma_{med} \approx 16 \cdot \Gamma_{vac})$

- lineshape analysis sensitive to background subtraction:
 - M. Kaskulov, E. Hernandez, E.Oset, EPJA 31 (2007) 245
 - D. Trnka et al. PRL 94 (2005) 192303;
 - M. Nanova et al., PRC 82 (2010) 035209; EPJA 47 (2011) 16;
- lineshape sensitive to density at decay point; only ≈20% of ω decays occur at densities > 0.1ρ₀ even for for p₀< 500 MeV/c
- experimentally observed mass distribution = convolution of spectral function with branching ratio into channel being studied

$$\frac{d\sigma_{H\to X_1X_2}}{d\mu} \sim A(\mu) \cdot \frac{\Gamma_{H\to X_1X_2}}{\Gamma_{tot}(\mu)}$$
 F. Eichstaedt et al., Prog. Theo. Phys. Suppl. 168 (2007) 495

ω yield reduced by increase of in-medium width ($\Gamma_{med} \approx 16 \cdot \Gamma_{vac}$)

- reduced in-medium yield spread out in mass, difficult to distinguish from background
- S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. E 19 (2010) 147; ArXiv:0907.2388

Study of ω in-medium signal in GiBUU simulations

Stefan Friedrich, Janus Weil

Intensity of ω→π⁰γ signal reduced with increasing collisional width since ω mesons are removed in the nuclear medium via inelastic channels (like ωN→πN).

Study of ω in-medium signal in GiBUU simulations

Stefan Friedrich, Janus Weil

- Intensity of ω→π⁰γ signal reduced with increasing collisional width since ω mesons are removed in the nuclear medium via inelastic channels (like ωN→πN).
- only 20 % of all ω decays occur at densities $\rho > 0.1\rho_0$ even for $\rho_\omega < 500$ MeV/c
- ω decays occur over a wide range of densities, thereby smearing out any density-dependent signal

Comparison of w momentum distribution to GiBUU calculations

comparison to different in-medium scenarios ($E_{\gamma} = 900 - 1300 \text{ MeV}$)

M.Thiel, J. Weil, U. Mosel

Collisional broadening without mass shift favoured

Measurement of ω excitation function

additional test for ω broadening and/or mass shift scenario

Gi-BUU simulations: P. Mühlich (PhD-thesis, Giessen 2006)

K. Gallmeister et al. Prog. Part. Nucl. Phys. 61 (2008) 283

Enhanced ω yield for dropping mass scenario below production threshold on free nucleon

Comparison of measured excitation function with GiBUU calculations

B. Lemmer, S. Friedrich, H. Berghäuser, M. Thiel, J. Weil

data disfavour "broadening + mass shift" scenario and favour "collisional broadening without mass shift" scenario

Summary and conclusions

- ω line shape analysis has limited sensitivity:
 no evidence for structures or shifts in mass distributions
 <u>sensitive to nuclear density at decay point</u>
- Observables sensitive to nuclear density at the production point: applicable to hadrons of any lifetime
- transparency ratio measurement shows strong ω absorption;
 - → in-medium width ≈ 130 -150 MeV at $ρ_0$ for $ρ_ω$ ≈1.1 GeV/c
- ω momentum distribution favours collisional broadening without mass shift
- ω excitation function favours collisional broadening without mass shift
- search for ω mesic states: analysis still ongoing

hadron spectral functions do change in the nuclear environment