## Towards Meson Spectroscopy Instead of Bump Hunting

## George Rupp

CFIF, Instituto Superior Técnico, Lisbon
Co-authors: Eef van Beveren, Susana Coito, Jorge Segovia
I. What's wrong with bump hunting (only)?
II. $X(4260)$
III. Resonance-Spectrum Expansion
IV. $X(3872)$ as a unitarised $1^{++} c \bar{c}$ state
V. $D_{1}(2420), D_{1}(2430), D_{s 1}(2536), D_{s 1}(2460)$
VI. A possible surprise: $E(38)$
VII. Conclusions

## I. What's wrong with bump hunting (only)?

$\Rightarrow$ A) Mesonic resonances may not show up as bumps
B) Bumps may not be resonances

Examples of A :

- $f_{0}(600)(\sigma)$ and $K_{0}^{*}(800)(\kappa)$, due to large widths, Adler zero at $\pi \pi$ resp. $K \pi$ threshold, and overlapping resonances ( $f_{0}(980)$ resp. $K_{0}^{*}(1430)$ ); see e.g. EvB, D. V. Bugg, F. Kleefeld, GR, Phys. Lett. B 641 (2006) 265.
Examples of B :
- Several $X \mathrm{~s}, ~ Y \mathrm{~s}$, and $Z \mathrm{~s}$, such as $X(4260)$ ("depletion"; see below), and possibly $Z_{b}(10610), Z_{b}(10650)\left(B B^{*}, B^{*} B^{*}\right.$ threshold cusps; see D. V. Bugg, arXiv:1105.5492).
$\Rightarrow$ Further problems for model builders: true resonance bumps may show up considerably shifted, broader, or narrower than expected from the naive quark model, due to "unquenching".
Examples:
- $X(3872) ; D_{1}(2420), D_{1}(2430), D_{s 1}(2536), D_{s 1}(2460)$
II. $X(4260)$
$\Rightarrow$ BaBaR Collaboration, Phys. Rev. Lett. 95 (2005) 142001


X(4260)


No signal in $\Pi \Pi J / \Psi$ where the $\Psi(4 S)$ is expected, Because $\Psi(4 S) \rightarrow D_{s} * \underline{D}_{s} *$ depletes the $\Pi \Pi J / \Psi$ signal.

- data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
- EvB, GR, Chin. Phys. C 35 (2011) 319
- EvB, GR, Phys. Rev. Lett. 105 (2010) 102001
(http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/4260.htm)

| Depletion |  |
| :---: | :---: |
|  |  |
| Radiation of a system with vacuum quantum numbers ( $\sigma$ ). <br> The cc system jumps to a lower lying stable state: $\boldsymbol{\psi}(1,2 S)$. | Open-charm decay via the creation of a light quark-antiquark pair. |

## Left: Slow radiation process.

Right: Fast open-charm decay.
The latter process dominates at resonances and threshold enhancements.

- EvB, GR, arXiv:0904.4351
- EvB, GR, J. Segovia, Phys. Rev. Lett. 105 (2010) 102001
(http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/depletion.htm)

Depletion by open-charm decays of the $X(4260)$ signal in $\Pi^{+} \Pi^{-} \mathbf{J} / \Psi$


By threshold enhancements:
DD, DD*, $D_{s} D_{s}, D^{*} D^{*}, D_{s} D_{s}{ }^{*}, D_{s} * D_{s}{ }^{*}, \Lambda_{\mathrm{c}} \Lambda_{\mathrm{c}}$. By cc resonances: $\boldsymbol{\psi}(3 \mathrm{~S}), \boldsymbol{\psi}(2 \mathrm{D}), \boldsymbol{\psi}(4 \mathrm{~S}), \boldsymbol{\psi}(3 \mathrm{D})$.

- data from BaBar, Phys. Rev. Lett. 95, 142001 (2005)
- figure from Evb, GR, JS, Phys. Rev. Lett. 105, 102001 (2010)
(http://cft.fis.uc.pt/eef/Frascati2010talk/depletion/octopsi.htm)


## III. Resonance-Spectrum Expansion

$\Rightarrow$ Building blocks of RSE are:



- $V$ is the effective two-meson potential;
- $\Omega$ is the two-meson loop function;
- the blobs are the ${ }^{3} P_{0}$ vertex functions, modelled by a spherical $\delta$ shell in coordinate space, i.e., a spherical Bessel function in momentum space;
- the wiggly lines stand for s-channel exchanges of infinite towers of $q \bar{q}$ states, i.e., a kind of Regge propagators.
$\Rightarrow$ For $N$ meson-meson channels and several $q \bar{q}$ channels:

$$
\begin{aligned}
V_{i j}^{\left(L_{i}, L_{j}\right)}\left(p_{i}, p_{j}^{\prime} ; E\right) & =\lambda^{2} r_{0} j_{L_{i}}^{i}\left(p_{i} r_{0}\right) j_{L_{j}}^{j}\left(p_{j}^{\prime} r_{0}\right) \sum_{\alpha=1}^{N_{q \bar{q}}} \sum_{n=0}^{\infty} \frac{g_{i}^{(\alpha)}(n) g_{j}^{(\alpha)}(n)}{E-E_{n}^{(\alpha)}} \\
& \equiv \mathcal{R}_{i j}(E) j_{L_{i}}^{i}\left(p_{i} r_{0}\right) j_{L_{j}}^{j}\left(p_{j}^{\prime} r_{0}\right)
\end{aligned}
$$

$\Rightarrow$ The closed-form off-energy-shell $T$-matrix then reads

$$
\begin{aligned}
& T_{i j}^{\left(L_{i}, L_{j}\right)}\left(p_{i}, p_{j}^{\prime} ; E\right)= \\
& -2 \lambda^{2} r_{0} \sqrt{\mu_{i} p_{i} \mu_{j}^{\prime} p_{j}^{\prime}} j_{L_{i}}^{j}\left(p_{i} r_{0}\right) \sum_{m=1}^{N} \mathcal{R}_{i m}(E)\left\{[\mathbb{1}-\Omega \mathcal{R}]^{-1}\right\}_{m j} j_{L_{j}}^{j}\left(p_{j}^{\prime} r_{0}\right) \\
& \Omega=-2 i \lambda^{2} r_{0} \operatorname{diag}\left(j_{L_{n}}^{n}\left(k_{n} r_{0}\right) h_{L_{n}}^{(1) n}\left(k_{n} r_{0}\right)\right)
\end{aligned}
$$

$\Rightarrow$ The corresponding unitary and symmetric $S$-matrix is given by

$$
S_{i j}^{\left(L_{i}, L_{j}\right)}\left(k_{i}, k_{j}^{\prime} ; E\right)=\delta_{i j}+2 i T_{i j}^{\left(L_{i}, L_{j}\right)}\left(k_{i}, k_{j}^{\prime} ; E\right)
$$

## IV. $X(3872)$ as a unitarised $1^{++} c \bar{c}$ state

$\Rightarrow$ SC, GR, EvB, arXiv:1008.5100, to appear in Eur. Phys. J. C

- In RSE, bare $2{ }^{3} P_{1} c \bar{c}$ state lies at 3979 MeV ;
- Couple it to $D^{0} D^{* 0}$ and other OZI-allowed channels, as well as to $\omega \mathrm{J} / \psi$ and $\rho^{0} \mathrm{~J} / \psi$;
- $\omega \mathrm{J} / \psi$ and $\rho^{0} \mathrm{~J} / \psi$ channels are smeared out so as to account for the $\omega$ and $\rho$ widths, by taking complex $\omega$ and $\rho$ masses and reunitarising the $S$-matrix (see paper in EPJC);
- $D^{0} D^{* 0}$ and $\rho^{0} \mathrm{~J} / \psi$ data are easily described (see plot on next slide), as well as the $\omega \mathrm{J} / \psi / \rho^{0} \mathrm{~J} / \psi$ branching ratio;
- Corresponding $X(3872)$ pole settles at or slightly below the $D^{0} D^{* 0}$ threshold, with an imaginary part of about $0.1-0.7 \mathrm{MeV}$;
- Peak in $\rho^{0} \mathrm{~J} / \psi$ at $\approx 3872-\mathrm{MeV}$ and cusp-like structure in $D^{0} D^{* 0}$ at $\approx 3874 \mathrm{MeV}$ appear naturally, with no need for an additional state.

V. $D_{1}(2420), D_{1}(2430), D_{s 1}(2536), D_{s 1}(2460)$
$\Rightarrow S C, G R, E v B$, arXiv:1106.2760 (expanded version under review)
- $D_{1}(2420)$ and $D_{1}(2430)$ are almost degenerate in mass, whereas $D_{s 1}(2536)$ and $D_{s 1}(2460)$ are 76 MeV apart;
- $D_{s 1}(2536)$ and $D_{s 1}(2460)$ are very narrow ( $<2.3$ resp. $<3.5$ $\mathrm{MeV}, D_{1}(2420)$ is narrow (20-25 MeV), and $D_{1}(2430)$ is very broad ( $\sim 384 \mathrm{MeV}$ );
- No simple quark model, with spin-orbit splitting, can reproduce this pattern of masses and widths;
- Also chiral Lagrangians for heavy-light systems, with chiral loop corrections, fail dramatically, with the loops even worsening the discrepancies.
- Our work: couple bare ${ }^{3} P_{1}$ and ${ }^{1} P_{1} c \bar{q}$ and $c \bar{s}$ systems to the most important OZI-allowed meson-meson channels, in RSE approach;
- Dynamics of equations generates 2 quasi-bound states in the continuum ( $D_{1}(2420)$ and $\left.D_{s 1}(2536)\right)$, as well as 2 strongly shifted states $\left(D_{1}(2430)\right.$ and $\left.D_{s 1}(2460)\right)$; see next slide;
- 8 observables are quite well reproduced with 2 parameters.
$\operatorname{Re} E(\mathrm{GeV})$



## VI. A possible surprise: $E(38)$

$\Rightarrow$ EvB, GR, arXiv:1102.1863


- Data from E. Guido [BaBaR Collaboration], arXiv:0910.0423


## VII. Conclusions

- In experiment, usually only the largest bumps are identified as resonances and analysed, whereas smaller structures are often discarded as "background" and/or "statistical fluctuations";
- Moreover, effects from strong thresholds are disregarded or parametrised in a too simple way;
- New mesonic enhancements that do not seem to fit in mainstream models are too easily interpreted as exotic states, instead of checking other possibilities, such as non-resonant threshold or depletion effects, and large shifts due to unquenching;
- The RSE model provides a simple empirical approach to unquenching the quark model, being fully solvable and manifestly non-perturbative;
- A detailed and more quantitative description of production processes in meson spectroscopy will require a better understanding of OZI-allowed and OZI-forbidden decays.

