Search for the He- η bound state with the WASA-at-COSY facility

Magdalena Skurzok

International School of Nuclear Physics, Erice-Sicily

September 19, 2011

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

INTERNATIONAL PHD PROJECT IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES This project is supported by the Foundation for Polish Science-MPD program co-financed by the European Union within the European Regional Development Fund

◆ロト ◆母ト ◆ヨト ◆ヨト ヨー のへで

Outline

- Eta-mesic bound states with a light nuclei
- 2 Search for η -mesic nuclei with WASA-at-COSY

3 Experiment

4 Summary and perspectives

A B + A B +

η -mesic bound state

Magdalena Skurzok Search for the He- η bound state with the WASA-at-COSY facilit

η -mesic bound state

Attractive interaction between η and N

R. Bhalerao, L. C. Liu, Phys. Lett. B54, 685 (1985)

possible existence of η -mesic bound state for A>12 Q. Haider, L. C. Liu, Phys. Lett. B172, 257 (1986)

・ 同 ト ・ ヨ ト ・ ヨ ト

η -mesic bound state

Recent theoretical investigations of hadronic- and photoproduction of η meson

$$0.27 fm \le \operatorname{Re} a_{\eta N} \le 1.05 fm$$
$$0.19 fm \le \operatorname{Im} a_{\eta N} \le 0.39 fm$$

Q. Haider, L. C. Liu , Phys. Lett. C66, 045208 (2002).

Magdalena Skurzok Search for the He- η bound state with the WASA-at-COSY facilit

Production of ⁴He- η in dd collision

$$dd \rightarrow ({}^{4}He - \eta)_{bs} \rightarrow {}^{3}He \ p \ \pi^{-}$$
$$dd \rightarrow ({}^{4}He - \eta)_{bs} \rightarrow {}^{3}He \ n \ \pi^{0} \rightarrow {}^{3}He \ n \ \gamma \ \gamma$$
$$h \ l \rightarrow ({}^{4}He - \eta)_{bs} \rightarrow h \ r \ r \ r \ r$$

$$dd \to ({}^{4}He - \eta)_{bs} \to d \ p \ p \ \pi^{-}$$
$$dd \to ({}^{4}He - \eta)_{bs} \to T \ p \ \pi^{0} \to T \ p \ \gamma \ \gamma$$

同 ト イ ヨ ト イ ヨ ト

Kinematical mechanism of the reaction

 $dd \rightarrow ({}^{4}\text{He-}\eta)_{bs} \rightarrow {}^{3}\text{He}p\pi^{-}$

Search for η -mesic nuclei with WASA-at-COSY

(日) (同) (三) (三)

Angular distributions of outgoing particles

$$dd
ightarrow ({}^4 ext{He-}\eta)_{bs}
ightarrow {}^3 ext{He}p\pi^-$$

э

Angular distributions of outgoing particles

 $dd
ightarrow ({}^{4} ext{He-}\eta)_{bs}
ightarrow {}^{3} ext{He}n\pi^{0}
ightarrow {}^{3} ext{He}n\gamma\gamma$

伺 ト く ヨ ト く ヨ ト

Geometrical acceptance

Figure 2.1: Geometrical acceptances of the WASA-at-COSY detector for the $dd \rightarrow ({}^{4}\text{He}-\eta)_{bs} \rightarrow {}^{3}\text{He}\rho\pi^{-}$ (left) and $dd \rightarrow ({}^{4}\text{He}-\eta)_{bs} \rightarrow {}^{3}\text{He}n\pi^{0} \rightarrow {}^{3}\text{He}n\gamma\gamma$ reaction (right). Acceptance is calculated for three different bound state width values and AV18 potencial model describing nucleon momentum distribution inside ${}^{4}\text{He}$.

Simulation-assumptions

- Resonant structure of the eta-mesic bound state given by Breit-Wigner distribution (with assumed width and binding energy)
- Nucleon momenta in atomic nuclei described by Fermi distributions
- Spectator model

伺 ト く ヨ ト く ヨ ト

Expected results of the measurement

Angle between p and π^- in the CM frame $\Theta_{CM_{N*}} = 180^{\circ}$

Excitation function

 $({}^{4}\text{He-}\eta)_{bs}$ existence manifested by resonant-like structure below η production threshold

イロト イポト イヨト イヨト

Experiment-May 2008

Exp. No. 186.1: Search for the η -He bound state with WASA-at-COSY

Channel: $dd \rightarrow ({}^{4}\text{He-}\eta)_{bs} \rightarrow {}^{3}\text{He}p\pi^{-}$

Measurement: performed with the beam momentum ramped from 2.185GeV/c to 2.400GeV/c, corresponding to the range of excess energy $Q \in (-51,22)$ MeV

Time: T=16.5h **Acceptance:** A=53% **Luminosity:** L= $3 \cdot 10^{30} cm^{-2} s^{-1}$

Upper limit of the total cross section: σ =20nb

Experiment-Nov/Dec 2010

Exp. No. 186.2: Search for the η -He bound state with WASA-at-COSY

Beamtime: Nov 26 - Dec 13, 2010

Channels:
$$dd \rightarrow ({}^{4}\text{He}-\eta)_{bs} \rightarrow {}^{3}\text{He}p\pi^{-}$$

 $dd \rightarrow ({}^{4}\text{He}-\eta)_{bs} \rightarrow {}^{3}\text{He}n\pi^{0} \rightarrow {}^{3}\text{He}n\gamma\gamma$

Measurement: performed with the beam momentum ramped from 2.127 GeV/c to 2.422 GeV/c, corresponding to the range of excess energy $Q \in (-70,30) MeV$

伺 ト イ ヨ ト イ ヨ ト

Eta-mesic bound states with a light nuclei Search for η -mesic nuclei with WASA-at-COSY Experiment

Summary and perspectives

Experiment-Nov/Dec 2010

Time: T=154h Acceptance: A=53% Luminosity: L= $8.2 \cdot 10^{30} cm^{-2} s^{-1}$

₽

Taking into account the fact that there were two reactions measured, in total more than **40 times higher** statistics were collected than in experiment carried out in 2008.

Summary and perspectives

Chance for the discovery of the $({}^{4}\text{He-}\eta)_{bs}$ with the WASA-at-COSY facility (study of the excitation function)

- Determination of the bound state width and binding energy of (⁴He-η)_{bs}
- Investigation of interaction of the η meson and the nucleons inside a nuclear matter
- Information about resonances in nuclear matter (N*(1535))
- Information about η meson structure (wave function)

If no peak observed \Rightarrow determination of the upper limit of the total cross section with accurance of few nb.

Thank you for attention

Magdalena Skurzok Search for the He- η bound state with the WASA-at-COSY facilit

・ 同 ト ・ ヨ ト ・ ヨ ト