$\begin{array}{ll} & \mbox{Motivation} \\ \mbox{Experimental data on pseudoscalar meson transition FFs} \\ & U\&A \mbox{ model of transition FFs} \\ & \sigma_{tot}(e^+e^- \to P\gamma) \mbox{ Contributions to muon g-2} \\ \mbox{Two-photon decays from data on transition FFs} \\ & \mbox{ Conclusions} \end{array}$

Pseudoscalar meson transition form factors

Stanislav Dubnicka, Anna Zuzana Dubnickova, Andrej Liptaj

Institute of Physics SAS, Bratislava and Dept. of Theoretical Physics, Comenius University, Bratislava, Slovakia

September 22, 2011

Erice School, Sicily : "From Quarks and Gluons to Hadrons and Nuclei", 16. -24. September 2011

・ 戸 ト ・ ヨ ト ・ ヨ

 $\begin{array}{ll} & \mbox{Motivation} & \mbox{Motivation} \\ \mbox{Experimental data on pseudoscalar meson transition FFs} \\ & U\&A \mbox{model of transition FFs} \\ & \sigma_{tot}(e^+e^- \rightarrow P\gamma) \mbox{Contributions to muon g-2} \\ \mbox{Two-photon decays from data on transition FFs} \\ & \mbox{Conclusions} \end{array}$

Outline

1 Motivation

- 2 Experimental data on pseudoscalar meson transition FFs
- 3 U&A model of transition FFs
- (4) $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2
- 5 Two-photon decays from data on transition FFs

6 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Experimental data on pseudoscalar meson transition FFs U&A model of transition FFs $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

The muon anomalous magnetic moment $a_{\mu} = (g_{\mu} - 2)/2$ is one of the most precisely measured quantities in particle physics

$$a_{\mu}^{exp} = 11659208.0(6.3) \times 10^{-10}$$
 (1)

- G.W.Bennet et al, Phys. Rev. D73 (2006) 072003
- In SM theoretical evaluations it consists of the 3 contributions:

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{had}$$
 (2)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• F.Jegerlehner and A.Nyffeler, Phys. Reports 477 (2009) 1-110

Experimental data on pseudoscalar meson transition FFs U&A model of transition FFs $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

and the latest reevaluation

 M.Davier, A.Hoecker, B.Malaescu and Z.Zhang, Eur. Phys. J. C71 (2011) 71:1515

gives

$$a_{\mu}^{th} = 11659180.2(4.9) \times 10^{-10}$$
 (3)

Then

$$a_{\mu}^{exp} - a_{\mu}^{th} = 27.8(8.0) \tag{4}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

and Standard Model predictions differ by 3.5σ from the experimental value.

Experimental data on pseudoscalar meson transition FFs U&A model of transition FFs $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

Anom.magnetic moment is **caused** mainly by the **leading order** (LO) hadronic contributions in the low-energy region $m_{\pi_0^2} < t < t_{max}$ by the **exclusive hadronic final states**

$$a_{\mu}^{had.LO} = \frac{1}{3} \left(\frac{\alpha}{\pi}\right)^2 \left\{ \int_{m_{\pi^0}}^{t_{max}} \frac{dt}{t} K(t) \frac{3t}{4\pi\alpha^2} \sum_i \sigma_{tot}(e^+e^- \to i) + \int_{t_{max}}^{\infty} \frac{dt}{t} K(t) R(t) \right\}$$
(5)

・ロト ・得ト ・ヨト ・ヨト

Experimental data on pseudoscalar meson transition FFs U&A model of transition FFs $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

Results can be improved by two ways:

- by a more precise measurement of σ_{tot}(e⁺e⁻ → i) and then by an integration over the experimental points as it is realized in almost all existing evaluations
- in the case of binary final states in e^+e^- -annihilation processes, fitting all existing data on the corresponding FF by a sophisticated model in space-like and time-like regions simultaneously and then integrating over $\sigma_{tot}(e^+e^- \rightarrow i)$ to be given through FF dependent on few physically interpretable parameters with transferred errors.

イロト イポト イラト イラト

Experimental data on pseudoscalar meson transition FFs U&A model of transition FFs $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

Further, we are concerned in the contributions of the $e + e^- \rightarrow P\gamma$, $(P = \pi^0, \eta, \eta')$ processes to $a_{\mu}^{had.LO}$

$$\sigma_{tot}(e^+e^- \to P\gamma) = \frac{\pi\alpha^2}{6} (1 - \frac{m_P^2}{s})^3 \mid F_P\gamma(s) \mid^2 \tag{6}$$

- 同 ト - ヨ ト - - ヨ ト

With the aim of diminishing the error of the contribution, we shall **exploit the second way of improvements**.

One of the first measurements of π^0 , η and η' transition FFs in the space-like region was carried out by

• H.J.Behrend et al (CELLO Collab.), Z. Phys. C49 (1991) 401-409.

where really the π^0 transition FF in the space-like region was observed for the first time.

An extension to higher Q^2 was achieved by

- J.Gronberg et al (CLEO Collab.), Phys. Rev. D57 (1998) 33-54
- to be recently supplemented for π^0 up to $Q^2 = 34.36 GeV^2$ by
 - B.Aubert et al (BABAR Collab.), Phys. Rev. D80 (2009) 052002

イロト イポト イヨト イヨト

 $\begin{array}{c} Motivation\\ \mathsf{Experimental} \mbox{ data on pseudoscalar meson transition FFs}\\ U\&A \mbox{ model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P_{\gamma})\mbox{ Contributions to muon g-2}\\ \mathsf{Two-photon} \mbox{ decays from data on transition FFs}\\ Conclusions \end{array}$

These data can be completed for η' by 6 points of L3 Collab.

- M.Acciarri et al, Phys. Lett. B418 (1998) 399 and recent preliminary BABAR η and η' transition FFs
- V.P.Druzhinin, arXiv:1011.6159 [hep-ex] 6 Dec 2010, however to be **presented only graphically**.

- - E - - E

 $\begin{array}{c} \hline Motivation\\ \hline \text{Experimental data on pseudoscalar meson transition FFs}\\ U\&A \mbox{ model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P\gamma) \mbox{ Contributions to muon g-2}\\ \hline Two-photon decays from data on transition FFs}\\ \hline Conclusions \end{array}$

For a measurements of π^0 , η and η' in time-like region commonly the annihilation processes $e^+e^- \rightarrow \gamma P$ are used. Especially for π^0 and η a lot of data was obtained on colliding $e^+ - e^-$ beams in Novosibirsk by SND detector.

- M.N.Achasov et al, Eur. Phys. J. C12 (2000) 25
- M.N.Achasov et al, Phys. Lett. B559 (2003) 171-178 and by CMD-2 detector for η transition FF in
 - R.R.Akhmetsin et al, Phys. Lett. B509 (2001) 217-226

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ U\&A \mbox{model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P\gamma) \mbox{Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

The **latter corrected** and published together with π^0 in

• R.R.Akhmetsin et al, Phys. Lett. B605 (2005) 26-36.

Note:

1/3 of the presented data on $\sigma_{tot}(e^+e^- \rightarrow \eta\gamma)$ gives zero information on $F_{\gamma\eta}(t)$ - only upper boundary estimations are presented - or the values are charged by the error equal, even larger, than the central value.

These data can be completed by BABAR η and η' transition FFs at $t=112\,{\rm GeV^2}$

・ロト ・ 同ト ・ ヨト ・ ヨト

• B.Aubert et al, Phys. Rev. D74 (2006) 012002,

by NA60 η FF

• R.Arnaldi et al, Phys. Lett. B677 (2009) 260

and by MAMI-C also η FF

• H.Berghauser et al, Phys. Lett. B701 (2011) 562

the last two again presented only graphically.

Further, our intention will be to achieve **optimal description** of all these t < 0 and t > 0 data on $F_{\gamma\pi^0}(t)$, $F_{\gamma\eta'}(t)$, $F_{\gamma\eta'}(t)$ always **by one analytic function** explicitly known on the real axis of t-plane from $-\infty$ to $+\infty$.

- 同 ト - ヨ ト - - ヨ ト

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ U\&A \mbox{model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P\gamma) \mbox{Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

These functions respect all known FF properties like

• the asymtotic behavior

$$\lim_{Q^2 \to \infty} Q^2 F_{\gamma P}(Q^2) = 2f_P \tag{7}$$

the normalization

$$lim_{Q^2 \to 0} F_{\gamma P}(Q^2) = \frac{1}{4\pi^2 f_P}$$
(8)

- the reality condition $F^*_{\gamma P}(t) = F_{\gamma P}(t^*)$
- analytic properties with the lowest branch point $t_0 = m_{\pi^0}^2$ and one effective inelastic branch point t_{inl}
- unitarity condition, i.e. ${\it ImF}_{\gamma P}(t)
 eq 0$ only for $m^2_{\pi^0} < t < \infty$

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \to P\gamma)$ Contributions to muon g-2$}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{$Conclusions$} \end{array}$

There is single FF for each $\gamma^* \rightarrow \gamma P$ transition defined by

$$< P(p)\gamma(k) \mid J_{\mu}^{EM} \mid 0> = \epsilon_{\mu\nu\alpha\beta} p^{\nu} \epsilon^{\alpha} k^{\beta} F_{\gamma P}(q^{2}), \qquad (9)$$

A straightforward calculation of $F_{\gamma P}(Q^2)$ behavior for $-\infty < Q^2 < +\infty$ in QCD is impossible, therefore we construct a sophisticated U&A model.

The **QCD motivated models** for a description of $F_{\gamma P}(Q^2)$ in space-like region can be found in

• P.Kroll, Eur. Phys. J. C (2011) 71:1623

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2$}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

 $F_{\gamma P}(t)$ - suitable to **split into two terms** depending on the isotopic character of the photon

$$F_{\gamma P}(t) = F_{\gamma P}^{I=0}(t) + F_{\gamma P}^{I=1}(t)$$
(10)

(4月) (4日) (4日)

 $F_{\gamma P}^{I=0}(t)$ can be saturated by only isoscalar vector mesons $F_{\gamma P}^{I=1}(t)$ can be saturated by only isovector vector mesons whereby both sets possess photon quantum numbers.

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \to P_{\gamma})$ Contributions to muon g-2$}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions}\end{array}$

How much resonances will be considered ?

It is prescribed by the interval of existing data in t > 0 region.

The data on π^0 - allow to consider all 3 ground state vector mesons $\rho(770)$, $\omega(782)$, $\phi(1020)$ - adding also $\omega'(1420)$ and $\rho'(1450)$ in order to obtain automatically normalized models.

The same number of resonances is considered for η and η' .

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{Experimental data on pseudoscalar meson transition FFs} \\ \mbox{$U\&A$ model of transition FFs$} \\ \mbox{$\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2$} \\ \mbox{Two-photon decays from data on transition FFs} \\ \mbox{Conclusions} \end{array}$

Resonance parameters are fixed at the TABLE values. Then **normalized 5 resonance VMD parametrization** is

$$F_{P\gamma}^{I=0}(t) = \frac{1}{2} \mathbf{F}_{\mathbf{P}\gamma}(\mathbf{0}) \frac{m_{\omega}^{\prime 2}}{m_{\omega}^{\prime 2} - t} + \left\{ \frac{m_{\omega}^{2}}{m_{\omega}^{2} - t} - \frac{m_{\omega}^{\prime 2}}{m_{\omega}^{\prime 2} - t} \right\} (f_{\gamma P\omega}/f_{\omega}) + \left\{ \frac{m_{\phi}^{2}}{m_{\phi}^{2} - t} - \frac{m_{\omega}^{\prime 2}}{m_{\omega}^{\prime 2} - t} \right\} (f_{\gamma P\phi}/f_{\phi}) F_{P\gamma}^{I=1}(t) = \frac{1}{2} \mathbf{F}_{\mathbf{P}\gamma}(\mathbf{0}) \frac{m_{\rho'}^{2}}{m_{\rho}^{\prime 2} - t} + \left\{ \frac{m_{\rho}^{2}}{m_{\rho}^{2} - t} - \frac{m_{\rho}^{\prime 2}}{m_{\rho}^{\prime 2} - t} \right\} (f_{\gamma P\phi}/f_{\rho})$$

Stanislav Dubnicka, Anna Zuzana Dubnickova, Andrej Liptaj

Pseudoscalar meson transition form factors

э

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \to P\gamma)$ Contributions to muon g-2$}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

BUT $F_{P\gamma}(0) = \frac{2}{\alpha m_P} \sqrt{\frac{\Gamma(P \to \gamma \gamma)}{\pi m_P}}$, where $\Gamma(P \to \gamma \gamma)$ are fixed at the world averaged values from TABLE.

The analytic properties of $F_{\gamma P}(t)$:

• consist in the assumption - $F_{\gamma P}(t)$ is **analytic in the whole complex** *t*-**plane** besides two cuts on the positive real axis

・ 同 ト ・ ヨ ト ・ ヨ ト

• generated by **branch points** t_0 and t_{in} .

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \to P\gamma)$ Contributions to muon g-2$}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

Practically it is achieved by nonlinear transformations

$$t = t_0 - \frac{4(t_{in}^s - t_0)}{[1/V - V]^2}$$
(11)
$$t = t_0 - \frac{4(t_{in}^v - t_0)}{[1/W - W]^2}$$
(12)

伺 ト イ ヨ ト イ ヨ ト

in normalized VMD parametrizations, respectively.

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \hline \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{$Conclusions$} \end{array}$

The inelastic square-root branch points t_{in}^s and t_{in}^v include in average contributions of all higher important thresholds effectively and are left to be free parameters of U&A model.

Variable V(W) is conformal mapping

$$V(t) = i \frac{\sqrt{q_{in}^{s} + q} - \sqrt{q_{in}^{s} - q}}{\sqrt{q_{in}^{s} + q} + \sqrt{q_{in}^{s} - q}}$$
(13)

・ロト ・ 同ト ・ ヨト ・ ヨト ・

$$q = [(t - t_0)/t_0]; \quad q_{in}^s = [(t_{in}^s - t_0)/t_0]$$

of the four-sheeted Riemann surface in t-variable onto one V-plane (W-plane).

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \hline {\it U\&A model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P\gamma) \mbox{ Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

In order to **demonstrate the reality condition** $F^*_{\gamma P}(t) = F_{\gamma P}(t^*)$ explicitly, one can utilize relations between complex conjugate values of the corresponding zero-width VMD model pole positions in V(W) plane

$$V_{\omega 0} = -V_{\omega 0}^*, \quad W_{\rho 0} = -W_{\rho 0}^* \tag{14}$$

and

$$V_{i0} = 1/V_{i0}^*, \quad i = \phi, \omega' \quad W_{\rho'0} = 1/W_{\rho'0}^*$$
 (15)

following from the experience that in a fitting procedure of existing data on $F_{\gamma P}(t)$ such numerical value of $t_{in}^{s}(t_{in}^{v})$ is found that

$$(m_i^2 - \Gamma_i^2/4) < t_{in}^s, t_{in}^v \quad i = \omega, \rho$$
(16)

- 同 ト - ヨ ト - - ヨ ト

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \mbox{$U\&A$ model of transition FFs}\\ \mbox{$\sigma_{tot}(e^+e^- \to P\gamma)$ Contributions to muon g-2$}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

and

$$(m_j^2 - \Gamma_j^2/4) > t_{in}^s, t_{in}^v \quad j = \phi, \omega', \rho'.$$
(17)

Finally, incorporating $\Gamma \neq 0$ by a substitution

$$m_r^2 \to (m_r - i\Gamma_r/2)^2 \tag{18}$$

- 4 同 6 4 日 6 4 日 6

э

one comes to $U\&A \mod f_{\gamma P}(t)$ in the form

$$\begin{split} F_{\gamma P}^{I=0}[V(t)] &= (\frac{1-V^2}{1-V_N^2})^2 \{ \frac{1}{2} F_{\gamma P}(0) H(\omega') \\ &+ [L(\omega) - H(\omega')] a_{\omega} \\ &+ [H(\phi) - H(\omega')] a_{\phi} \} \end{split}$$

Experimental data on pseudoscalar meson transition FFs

U&A model of transition FFs

 $\begin{array}{l} \sigma_{tot}(e^+e^- \to P\gamma) \mbox{ Contributions to muon g-2} \\ \mbox{Two-photon decays from data on transition FFs} \\ \mbox{ Conclusions} \end{array}$

$$F_{\gamma P}^{I=1}[W(t)] = (\frac{1-W^2}{1-W_N^2})^2 \{\frac{1}{2}F_{\gamma P}(0)H(\rho') + [L(\rho) - H(\rho')]a_\rho\}$$

with

$$L(\omega) = \frac{(V_N - V_\omega)(V_N - V_\omega^*)(V_N - 1/V_\omega)(V_N - 1/V_\omega^*)}{(V - V_\omega)(V - V_\omega^*)(V - 1/V_\omega)(V - 1/V_\omega^*)}$$

$$H(i) = \frac{(V_N - V_i)(V_N - V_i^*)(V_N + V_i)(V_N + V_i^*)}{(V - V_i)(V - V_i^*)(V + V_i)(V + V_i^*)}, i = \phi, \omega'$$

$$L(\rho) = \frac{(W_N - W_\rho)(W_N - W_\rho^*)(W_N - 1/W_\rho)(W_N - 1/W_\rho^*)}{(W - W_\rho)(W - W_\rho^*)(W - 1/W_\rho)(W - 1/W_\rho^*)}$$

Stanislav Dubnicka, Anna Zuzana Dubnickova, Andrej Liptaj

э

 $\begin{array}{c} \mbox{Motivation} \\ \mbox{Hot} a \mbox{on pseudoscalar meson transition FFs} \\ \mbox{$U\&A$ model of transition FFs} \\ \mbox{σ tot}(e^+e^- \rightarrow P\gamma) \mbox{ Contributions to muon } g-2 \\ \mbox{Two-photon decays from data on transition FFs} \\ \mbox{Conclusions} \end{array}$

$$H(\rho') = \frac{(W_N - W_{\rho'})(W_N - W_{\rho'}^*)(W_N + W_{\rho'})(W_N + W_{\rho'}^*)}{(W - W_{\rho'})(W - W_{\rho'}^*)(W + W_{\rho'})(W + W_{\rho'}^*)}$$

and normalization points $V(t)_{t=0} = V_N$, $W(t)_{t=0} = W_N$. It depends - on **5 free parameters**

$$t_{in}^{s}, t_{in}^{v}, \mathbf{a}_{j} = (f_{\gamma P j}/f_{j}) \quad j = \rho, \omega, \phi$$
(19)

- 4 同 6 4 日 6 4 日 6

determined in an optimal description of existing data.

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ U\&A \mbox{model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P\gamma) \mbox{Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions}\end{array}$

In optimal description of existing data one finds the free parameters of the U&A models

for
$$\pi^0$$
: (see Fig.1) $q_{in}^s = 5.5210 \pm 0.0084$
 $q_{in}^v = 5.6120 \pm 0.1414$
 $a_\omega = 0.0063 \pm 0.0013$
 $a_\phi = -0.0004 \pm 0.0001$
 $a_\rho = 0.0212 \pm 0.0006$
 $\chi^2/ndf = 121/75 = 1.61$

・ 同 ト ・ ヨ ト ・ ヨ ト

Experimental data on pseudoscalar meson transition FFs

U&A model of transition FFs

 $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs

Conclusions

Figure: 1 A description of data on $\gamma - \pi^0$ transition form factor.

-

-∢ ≣ →

Experimental data on pseudoscalar meson transition FFs

&A model of transition FFs

 $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

for
$$\eta$$
: (see Fig.2)
 $q_{in}^{s} = 6.7104 \pm 0.0190$
 $q_{in}^{v} = 5.5006 \pm 0.0632$
 $a_{\omega} = 0.0002 \pm 0.0014$
 $a_{\phi} = -0.0020 \pm 0.0003$
 $a_{\rho} = 0.0250 \pm 0.0013$
 $\chi^{2}/ndf = 52/52 = 1.00$

・ロト ・回ト ・モト ・モト

э

Experimental data on pseudoscalar meson transition FFs

U&A model of transition FFs

 $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs

Conclusions

Figure: 2 A description of data on $\gamma - \eta$ transition form factor.

A 10

→ □ → → □ →

Experimental data on pseudoscalar meson transition FFs

&A model of transition FFs

 $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

for
$$\eta'$$
: (see Fig.3)
 $q_{in}^{s} = 5.5366 \pm 0.0891$
 $q_{in}^{v} = 7.7554 \pm 0.0158$
 $a_{\omega} = -0.1134 \pm 0.0078$
 $a_{\phi} = 0.0098 \pm 0.0091$
 $a_{\rho} = 0.1241 \pm 0.0026$
 $\chi^{2}/ndf = 59/50 = 1.18$

・ロト ・回ト ・モト ・モト

э

Experimental data on pseudoscalar meson transition FFs

U&A model of transition FFs

 $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

Figure: 3 A description of data on $\gamma - \eta'$ transition form factor.

< A >

A B > A B >

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ U\&A \mbox{model of transition FFs}\\ \sigma_{tot}(e^+e^- \rightarrow P\gamma) \mbox{Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

MUON g-2

Obtaining in a such way **behavior of FFs in time-like resonant region**, one can calculate corresponding $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ and subsequently to **evaluate contributions**

$$\Delta a_{\mu}^{P\gamma} = \frac{1}{4\pi^3} \int_{m_{\pi^0}}^{t_{max}} ds \sigma_{tot}^{P\gamma}(t) \mathcal{K}(t)$$
(20)

・ 同 ト ・ ヨ ト ・ ヨ ト

to muon g - 2. The **upper boundary** of the low-energy integral is taken at the value $t_{max} = 2.0449 GeV^2$.

In such way the region with relative good data at least on π_0 and $\eta~$ is covered.

The following results are determined:

$$egin{array}{rcl} s^{\pi^0\gamma} &=& 5.372(036) imes 10^{-10}\ s^{\eta\gamma}_{\mu} &=& 1.155(008) imes 10^{-10}\ s^{\eta'\gamma}_{\mu} &=& 2.069(965) imes 10^{-10} \end{array}$$

to be compared with the recent values of

 M.Davier, A.Hoecker, M.Malaescu and Z.Zhang, Eur. Phys. J. C71 (2011) 71:1515

$$egin{array}{rcl} a^{\pi^0\gamma}_\mu &=& 4.420(194) imes 10^{-10}\ a^{\eta\gamma}_\mu &=& 0.640(024) imes 10^{-10}\ a^{\eta'\gamma}_\mu &=& ---- \end{array}$$

 $\begin{array}{l} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \sigma_{tot}(e^+e^- \rightarrow P\gamma) \mbox{Contributions to muon } g-2\\ \mbox{Two-photon decays from data on transition } FFs\\ \mbox{Conclusions} \end{array}$

One can leave the norm $F_{P\gamma}(0)$ at the U&A models of transition FFs to **be free parameters** and determine them from the fit of the data.

Other free parameters are slightly changed, better description of data is achieved and the **following values of the norms** are found

 $\begin{array}{l} \mbox{Motivation} \\ \mbox{mental data on pseudoscalar meson transition FFs} \\ \sigma_{tot}(e^+e^- \rightarrow P\gamma) \mbox{Contributions to muon g-2} \\ \mbox{Two-photon decays from data on transition From Conclusions} \\ \end{array}$

$$egin{array}{rll} F_{\gamma\pi^0}(0) &=& 0.0352\pm 0.0070 [m_\pi^{-1}] \ F_{\gamma\eta}(0) &=& 0.0348\pm 0.0026 [m_\pi^{-1}] \ F_{\gamma\eta'}(0) &=& 0.0469\pm 0.0016 [m_\pi^{-1}] \end{array}$$

Finally, recalculated values of two-photon decay widths from the obtained normalization points $F_{\gamma P}(0)$ by means of

イロト イポト イヨト イヨト

э

$$\Gamma(P o \gamma \gamma) = rac{\pi lpha^2 m_P^3}{4} F_{P\gamma}^2(0)$$
 and are

Experimental data on pseudoscalar meson transition FFs U&A model of transition FFs

 $\sigma_{tot}(e^+e^- \rightarrow P\gamma)$ Contributions to muon g-2 Two-photon decays from data on transition FFs Conclusions

$$\begin{array}{lll} \Gamma(\pi^0 \rightarrow \gamma \gamma) &=& (5.28 \pm 0.26) eV \\ \Gamma(\eta \rightarrow \gamma \gamma) &=& (428.33 \pm 63.70) eV \\ \Gamma(\eta' \rightarrow \gamma \gamma) &=& (4142.88 \pm 274.01) eV \end{array}$$

to be compared with TABLE values

$$\begin{split} \Gamma_{exp}(\pi^0 \to \gamma \gamma) &= (7.84 \pm 0.56) eV \\ \Gamma_{exp}(\eta \to \gamma \gamma) &= (511.03 \pm 27.79) eV \\ \Gamma_{exp}(eta' \to \gamma \gamma) &= (4305.00 \pm 424.95) eV \end{split}$$

The largest disagreement is found for the π^0 value, indicating that something is wrong:

Stanislav Dubnicka, Anna Zuzana Dubnickova, Andrej Liptaj Pseudoscalar meson transition form factors

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ \sigma_{tot}(e^+e^- \rightarrow P\gamma) \mbox{Contributions to muon }g_2\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

- may be the value in TABLE is incorrect
- may be the BABAR data in space-like region up to $Q^2 = 35 GeV^2$ are not reliable
- if not, then the expressions for the norm and asymptotic behavior of the pseudoscalar meson transition FFs derived by S.Brodsky(1981) from QCD are incorrect....(HARDLY!)

伺 ト イ ヨ ト イ ヨ ト

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Experimental data on pseudoscalar meson transition FFs}\\ U\&A \mbox{model of transition FFs}\\ \sigma_{tot}(e^+e^- \to P\gamma) \mbox{ Contributions to muon g-2}\\ \mbox{Two-photon decays from data on transition FFs}\\ \mbox{Conclusions} \end{array}$

- Existing data on pseudoscalar meson transition FFs are described by the sophisticated U&A model
- Knowing transition FFs, σ_{tot}(e⁺e⁻ → Pγ) are found and the contributions of e⁺e⁻ → Pγ processes to muon g-2 anomaly are evaluated
- By an alternative method two-gamma decay widths of π^0 , η and η' pseudoscalar mesons have been determined

(人間) システレ イテレ