Photoproduction of mesons off light nuclei

B. Krusche, U. Basel

Introduction

- Crystal Ball & TAPS @ MAMI
- Crystal Barrel & TAPS @ ELSA

Experimental results

- photoproduction off quasi-free nucleons: η , π^o , $\pi^o\pi^o$, η' , $\pi^o\eta$, $\pi^{\pm}\eta$, $\pi^o\pi^{\pm}$,...
- coherent photoproduction of mesons off light nuclei: η , $\pi^{o}\eta$, $\pi^{o}\pi^{o}$, $\pi^{o}\pi^{o}\pi^{o}$

Conclusions

B. Krusche, Erice School, Sicily, 2011

electromagnetic excitations of the neutron

- importance of measurements off the neutron:
 - different resonance contributions
 - needed for extraction of iso-spin composition of elm. couplings

- complications due to use of nuclear targets (deuteron):
 - coincident detection of recoil nucleons
 - Fermi motion, nuclear effects like FSI, coherent contributions

Experiments: Crystal Ball & Crystal Barrel with TAPS

Bonn ELSA accelerator: Crystal Barrel (CsI), TAPS (BaF₂) forward wall, inner detectors $E_{\gamma} \leq 3.5$ GeV, lin. pol.: available,

circ. pol.: available

MWPC

Scale · 200mr

Particle Identification Detector

Mainz MAMI accelerator: Crystal Ball (NaJ), TAPS (BaF₂) forward wall, inner detectors $E_{\gamma} \leq 1.5$ GeV, lin. pol.: available, circ. pol.: available

B. Krusche, Erice School, Sicily, 2011

TAPS Crystal Ball - at MAMI

η -photoproduction off the proton: resonance contributions?

-33

29

branching ratios and elm. couplings (PDG): state b_n [%] • D₁₃(1520): 0.23±0.04 -24 166 59 139 • S₁₁(1535): 30 - 55 90 -46 • S₁₁(1650): 3 - 10 -15 53 • **D**₁₅(1675): **0**±1 19 15 -43 -58

- F₁₅(1680): 0±1 -15 133
- D₁₃(1700): 0±1
- P₁₁(1710): 6.2±1.0
- P₁₃(1720): 4±1
- D₁₅(1675) has stronger electromagnetic coupling to neutron than to proton but parameters quite uncertain: Aⁿ_{1/2}=-(21-57), Aⁿ_{3/2}=-(30-77)

 b_{η} =0-1% (PDG), b_{η} =17% (ETA-MAID, Chiang et al.)

interference structure in S₁₁-sector?

Data:

• CLAS:

- TAPS: B. Krusche et al., PRL74 (1995) 3736
- GRAAL: F. Renard et al., PLB528 (2002) 215
 - M. Dugger et al., PRL89 (2002) 222002
- Crystal Barrel: V. Crede et al., PRL94 (2005) 012004

what is expected for $n(\gamma, \eta)n$ - why is it interesting?

- total cross sections previous data from **GRAAL** experiment for proton and neutron **MAMI** only at lower reported narrow from MAID model with incident photon energies structure in neutron and without D₁₅(1675)) excitation function 0.8 full model MAID, proton 120-137 d(γ,η)X, σ_p/σ_p(E_y) $d\sigma/d\Omega$, i $d\Omega$ 120-137° 0.6 no D₁₅(1675), proton • $d(\gamma,\eta)X, \sigma_n/\sigma_n(E_{\lambda}^*)$ o[hub] 0.5 1.5 4 He(γ , η)X, σ_{r}/σ_{r} (E,) Δ ⁴He(γ , η)X, $\sigma_{n}/\sigma_{n}(E_{\lambda}^{*})$ 1.7 1.8 1.9 1.5 1.5 1.6 1.6 1.7 1.8 1.9 W,GeV W,GeV 0.8 Kaiser et al. σ_n/σ_p , Ω*b*γ 137-155° 10 137-155° MAID full model full model MAID. neutron MAID only S11(1535) 0.5 no D₁₅(1675), neutron 1.9 1.7 1.8 1.5 1.6 1.5 1.6 1.7 1.8 1.9 W,GeV W,GeV d5/dΩ, a.u. $120 - 155^{\circ}$ $d\sigma/d\Omega$ 120-155° 0.6 0.5 0.5 0 1500 1700 1800 800 1000 1600 700 900 1.5 1.6 1.7 18 1.9 1.5 1.6 1.7 18 1.9 W,GeV W,GeV W[MeV] E_v[MeV]
- predictions from chiral soliton models: P_{11} -like state of the anti-decuplet has strong photon-coupling to the neutron and large ηN decay branching ratio

control over Fermi motion and FSI effects

- test with help of proton data:
- most simple test: comparison of quasi-free proton cross section with Fermi folded free proton cross section - perfect agreement
- more detailed: final state kinematically completely determined, four-momenta of meson, participant-, and spectator-nucleon known
 - \implies W follows from invariant mass of meson and participant nucleon

momenta of spectator nucleons

control over detection efficiency of recoil nucleons

- η -photoproduction
- internal consistency:
- coherent part σ_d negligible:

 $\sigma_{incl} = \sigma_p + \sigma_n + (\sigma_d)$ $\sigma_n pprox \sigma_{incl} - \sigma_p$

excitation functions σ • distribution of differences of $\frac{d\sigma}{d\Omega}(n), \frac{d\sigma}{d\Omega}(incl-p)$

no indication of systematic effects from neutron detection efficiency!

quasifree η -photoproduction off the deuteron

• total cross section for $\gamma n \rightarrow \eta n$ from as function of incident photon energy: pronounced structure around $E_{\gamma} \approx 1$ GeV

'de-folding' of Fermi motion

- for events with neutron in TAPS $(\cos(\Theta_{\eta}^{\star}) < -0.1)$ neutron energy from time-of-flight
- comparsion: W from photon energy (Fermi smeared) -W from nucleon - meson
 4-vectors (resolution smeared)
- de-folded proton cross section similar to free proton, de-folded neutron cross section shows structure around 1.7 GeV:

position:W=1683 MeVwidth: Γ =60±10 MeV(resolution dominated)

I. Jaegle et al., Phys. Rev. Lett. 100 (2008) 252002

ELSA

'de-folding' of Fermi motion - kinematical reconstruction

- reaction kinematics completely determined even without neutron ToF:
 - initial state:

incident photon and deuteron at rest known/measured: $E_{\gamma}, m_d, \vec{p_d} = 0$

• final state:

 η , participant, and spectator nucleon known/measured: $m_s, m_p, \Theta_p, \Phi_p, m_\eta, \vec{p}_\eta$ not measured: T_p, \vec{p}_s (four variables)

• four constraints

from energy/momentum conservation \rightarrow four-vectors of participant and spectator determined

I. Jaegle et al., arXiv:1107.2046 (published in Eur. Phys. J. A)

structure in n excitation function
 width \approx (25 \pm 10) MeV
 (resolution dominated)

Fermi de-folded proton and neutron data

 'peak' in neutron cross section related to 'dip' in proton cross sections (?) only 'dip' reproduced by MAID!

ELSA

preliminary excitation functions from MAMI

• new MAMI data confirm statistical significance of structure beyond any doubts

- correspond to \approx 30% of data taken
- will allow detailed analysis of angular distributions
- width of structures still resolution dominated

similar results for ³He target

L. Witthauer et al.

Summary

- narrow structure in excitation function of $\gamma n \rightarrow n\eta$:
- GRAAL: $W \approx 1680$ MeV, $\Gamma < 30$ MeV
- Tohoku-LNS: $W \approx 1670 \text{ MeV}, \Gamma < 40 \text{ MeV}$
- ELSA: $W \approx 1665 \text{ MeV}, \Gamma < 40 \text{ MeV}$
- MAMI-C: $W \approx 1675$ MeV, $\Gamma < 50$ MeV
- MAMI-C, ³He: $W \approx 1650$ MeV, $\Gamma < 50$ MeV
- so far no information about quantum numbers of possible resonance or whatever nature of the structure

measrement of polarization observables under way

- at MAMI data taken for target asymetry T (transversely polarized target and double polarization observable F (tranversely polarized target, circularly polarized beam)
- at ELSA double polarization observable *E* ('GDH') (longitudinally polarized target, circularly polarized beam)

online results free proton

quasi-free proton

Conclusions

Systematic investigation of meson production

off 2 H and 3 He

$rac{1}{2}$ η -photoproduction off deuteron:

- large difference for resonance contributions to $p(\gamma,\eta)p$ and $n(\gamma,\eta)n$
- narrow structure in excitation function off neutron

other channels:

iso-spin dependence of the elm. nucleon excitation

outlook:

quasi-free (double) polarization observables

I. Jaegle I. Keshelashvili T. Rostomyan M. Dieterle A. Käser Y. Maghrbi **M.** Oberle F. Pheron D. Werthmüller L. Witthauer Th. Challand **R.** Trojer