Time-like Electromagnetic form factors at PANDA

Yue Ma,

Helmholtz Institute Mainz

Nucleon form factor related talks from Erice2011 program

- Diego Bettoni (Ferrara)

Antiproton physics (timelike processes at PANDA)

- Nikolay Kivel (Mainz)

Nucleon FF in space- and time-like regions

- Dmitry Khaneft (Mainz)

Feasibility Study on the extraction of the time-like form factors via the process pbar $p \rightarrow e+e-$ with PANDA-Experiment at FAIRT using the PandaRoot frame work.

Nucleon form factor related talks from Erice2011 program

- Diego Bettoni (Ferrara)

Antiproton physics (timelike processes at PANDA)

- Nikolay Kivel (Mainz)

Nucleon FF in space- and time-like regions

- Dmitry Khaneft (Mainz)

Feasibility Study on the extraction of the time-like form factors via the process pbar $p \rightarrow e+e-$ with PANDA-Experiment at FAIRT using the PandaRoot frame work.

Outline

Theoretical preparation

- Definition \& interpretation of form factors (FFs)
- Time-like FFs \& spin observables

Experimental aspect

- pbar p \rightarrow e+ e-
- eppiO with TDA simulation
- Polarized target R\&D

Definition of form factors

- Dirac equation with external field
$\left(\gamma_{\mu} p_{\mu}-m\right) \psi=0 \quad \gamma_{\mu} p_{\mu} \rightarrow \gamma_{\mu} p_{\mu}+e \gamma_{\mu} A_{\mu}$
- Pauli equation (non-relativistic limit of Dirac equation)
$\left[\frac{1}{2 m}\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2}+e \phi+\mu_{B} \hat{\sigma} \cdot \vec{B}\right] \psi=i \hbar \frac{\partial \psi}{\partial t}$
- W. Pauli Rev. Mod. Phys. 13, 203 (1941)

$$
-i \kappa \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right)
$$

Definition of form factors

- Dirac equation with external field
$\left(\gamma_{\mu} p_{\mu}-m\right) \psi=0 \quad \gamma_{\mu} p_{\mu} \rightarrow \gamma_{\mu} p_{\mu}+e \gamma_{\mu} A_{\mu}$
Dirac term
- Pauli equation (non-relativistic limit of Dirac equation)
$\left[\frac{1}{2 m}\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2}+e \phi+\mu_{B} \hat{\sigma} \cdot \vec{B}\right] \psi=i \hbar \frac{\partial \psi}{\partial t}$
- W. Pauli Rev. Mod. Phys. 13, 203 (1941)

$$
-i \kappa \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right)
$$

Definition of form factors

- Dirac equation with external field
$\left(\gamma_{\mu} p_{\mu}-m\right) \psi=0 \quad \gamma_{\mu} p_{\mu} \rightarrow \gamma_{\mu} p_{\mu}+e \gamma_{\mu} A_{\mu}$
Dirac term already
- Pauli equation (non-relativistic limit of Dirac equation) and g
$\left[\frac{1}{2 m}\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2}+e \phi+\mu_{B} \hat{\sigma} \cdot \vec{B}\right] \psi=i \hbar \frac{\partial \psi}{\partial t}$
Pauli term
- W. Pauli Rev. Mod. Phys. 13, 203 (1941)

$$
-i \kappa \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right) \leftarrow \begin{gathered}
\text { to } \\
\text { anomalous } \\
\text { magnetic } \\
\text { moment }
\end{gathered}
$$

Extension

- Relativistic covariance \& gauge invariance
- Linear in electromagnetic potential
- Doesn't vanish in static case
- L.I. Foldy, Phys. Rev. 87688 (1952)

$e \gamma_{\mu} A_{\mu}$	$e \gamma_{\mu} \square^{n} A_{\mu}$	$e \gamma_{\mu} \sum_{n=0}^{\infty} \square^{n} A_{\mu}$
$-i \kappa \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right)$	$-i \kappa \gamma_{\nu} \gamma_{\mu} \square^{n}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right)$	$-i \kappa \gamma_{\nu} \gamma_{\mu} \sum_{n=0}^{\infty} \square^{n}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right)$

Scattering matrix

$$
\begin{aligned}
& S_{f i}=-i \int d x e^{-i q x} \bar{u}_{2}(-i)\left(F_{\text {Dirac }} \gamma_{\mu} A_{\mu}+\frac{1}{2} \kappa F_{\text {Pauli }} \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right)\right) u_{1} \\
& S_{f i}=-i \int d x e^{-i q x} \bar{u}_{2}(-i)\left(F_{\text {Dirac }} \gamma_{\mu}+\frac{1}{2} i \kappa F_{\text {Pauli }}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right) q^{\nu}\right) u_{1} A_{\mu}(x)
\end{aligned}
$$

- By inserting the summation of Dirac and Pauli term, each D'Alembert operator contributes a q^{2}
- Form factors as a function of q^{2} instead of constant

Scattering matrix

$$
\begin{aligned}
& \text { Diracterm Pauliterm } \\
& S_{f i}=-i \int d x e^{-i q x} \bar{u}_{2}(-i)\left(F_{\text {Dira }} \gamma_{\mu} A_{\mu}+\frac{1}{2} \kappa F_{\text {Paul }} \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right) u_{1}\right. \\
& S_{f i}=-i \int d x e^{-i q x} \overline{u_{2}}(-i)\left(F_{\text {Dirac }} \gamma_{\mu}+\frac{1}{2} i \kappa F_{\text {Pauli }}\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right) q^{\nu}\right) u_{1} A_{\mu}(x)
\end{aligned}
$$

- By inserting the summation of Dirac and Pauli term, each D'Alembert operator contributes a q^{2}
- Form factors as a function of q^{2} instead of constant

Scattering matrix

$$
\begin{gathered}
\text { Dirac term Pauli term } \\
S_{f i}=-i \int d x e^{-i q x} \bar{u}_{2}(-i)\left(F_{\text {Dirac }} \gamma_{\mu} A_{\mu}+\frac{1}{2} \kappa F_{\text {Paul }} \gamma_{\mu} \gamma_{\nu}\left(\frac{\partial A_{\mu}}{\partial x_{\nu}}-\frac{\partial A_{\nu}}{\partial x_{\mu}}\right) u_{1}\right. \\
S_{f i}=-i \int d x e^{-i q x} \bar{u}_{2}(-i) F_{\text {Dirac }} \gamma_{\mu}+\frac{1}{2} i r \underbrace{\text { Dirac \& Pauli FFS }}_{\left.\left.\left.F_{\text {Pauli }}\right) \gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right) q^{\nu}\right) u_{1} A_{\mu}(x)}
\end{gathered}
$$

- By inserting the summation of Dirac and Pauli term, each D'Alembert operator contributes a q^{2}
- Form factors as a function of q^{2} instead of constant

Sachs form factor

- Physics interpretation of FDirac and Fpauli :
- FDirac containing both charge and magnetic terms
- Fpauli only for anomalous magnetic momentum
- interference expression in cross section
- Non-relativistic limit
J.D. Walecka Nuovo Cimento 11821 (1959)
- Breit frame (one value for each q) R.G. Sachs, Phys. Rev. 126, 2256(1962)

Sachs form factor

- Physics interpretation of FDirac and Fpauli :
- FDirac containing both charge and magnetic terms
- Fpauli only for anomalous magnetic momentum
- interference expression in cross section
- Non-relativistic limit
J.D. Walecka Nuovo Cimento 11821 (1959)
- Breit frame (one value for each q) R.G. Sachs, Phys. Rev. 126, 2256(1962)

$$
\begin{array}{cl}
\bar{u}\left(\frac{1}{2} \vec{q}\right) \vec{F}(\vec{q}, 0) u\left(-\frac{1}{2} \vec{q}\right) \propto(\vec{\sigma} \times \vec{q}) G_{M}\left(\vec{q}^{2}\right) & G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\kappa F_{2}\left(q^{2}\right) \\
\bar{u}\left(\frac{1}{2} \vec{q}\right) F_{4}(\vec{q}, 0) u\left(-\frac{1}{2} \vec{q}\right) \propto G_{E}\left(\vec{q}^{2}\right) & G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 M^{2}} \kappa F_{2}\left(q^{2}\right)
\end{array}
$$

Sachs form factor

- Physics interpretation of FDirac and Fpauli :
- FDirac containing both charge and magnetic terms
- Fpauli only for anomalous magnetic momentum
- interference expression in cross section
- Non-relativistic limit
J.D. Walecka Nuovo Cimento 11821 (1959)
- Breit frame (one value for each q) R.G. Sachs, Phys. Rev. 126, 2256(1962)

$$
\begin{gathered}
\bar{u}\left(\frac{1}{2} \vec{q}\right) \vec{F}(\vec{q}, 0) u\left(-\frac{1}{2} \vec{q}\right) \propto(\vec{\sigma} \times \vec{q}) G_{M}\left(\vec{q}^{2}\right) \\
\bar{u}\left(\frac{1}{2} \vec{q}\right) F_{4}(\vec{q}, 0) u\left(-\frac{1}{2} \vec{q}\right) \propto G_{E}\left(\vec{q}^{2}\right)
\end{gathered}
$$

J.J. Kelly Phsy. Rev. C 66065203 (2002)

$$
\begin{gathered}
G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\kappa F_{2}\left(q^{2}\right) \\
G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\frac{q^{2}}{4 M^{2}} \kappa F_{2}\left(q^{2}\right)
\end{gathered}
$$

Dirac equation vs. nucleon

- Anomalous magnetic moment occurs
- Form factors as a function of q^{2} instead of constant
- Accommodate complicated meson clouds/quarks within Dirac equation
- By requiring T\&P invariance, $2 s+1$ form factors for spin s particles

Time-like vs. space-like $q^{2}<0$

 space-like region

$$
J_{\mu}=i e\left[F_{1}\left(q^{2}\right) \gamma_{\mu}+\frac{\kappa}{2 M} F_{2}\left(q^{2}\right) i \sigma_{\mu \nu} q^{\nu}\right]
$$

crossing symmetry

$$
\left\langle\bar{u}_{p^{\prime}}\right| J_{\mu}\left|u_{p}\right\rangle \frac{1}{q^{2}}\left\langle\bar{u}_{e^{\prime}}\right| j_{\mu}\left|u_{e}\right\rangle \longleftrightarrow\left\langle\bar{u}_{p^{\prime}} u_{p}\right| J_{\mu}|0\rangle \frac{1}{q^{2}}\langle 0| j_{\mu}\left|\bar{u}_{e^{\prime}} u_{e}\right\rangle
$$

Dispersion relation

Dispersion relation

- Causality: effect cannot exceed cause (Titchmarsh theorem)
- analyticity of G_{E} and G_{M} over complex q^{2} plane (application of Cauchy integral with multiple cuts)
- Causality vs. analyticity
- c.f. Simone Pacetti recent talk

Polarization: conplete measurenenent of fine-like FFs

Px: perpendicular to beam (inside scattering plane) Py: normal to scattering plane Pz: beam direction

$$
P_{y} \propto \sin (2 \theta) \operatorname{Im} G_{E}^{*} G_{M},
$$

perpendicular to scattering plane, either target or outgoing baryon
$P_{z x}=P_{x z} \propto \frac{1}{\sqrt{\tau}} \sin 2 \theta \operatorname{Re} G_{E} G_{M}^{*}$
Sensitive to the real part of $\mathrm{G}_{\mathrm{E}} \mathrm{G}_{\mathrm{M}}$; Together with P_{y}, a complete measurement of G_{E} and G_{M} in time like region can be made.
E. Tomasi-Gustafsson, et al. Eur. Phys. J. A 24, 419-430 (2005)

Experimental aspects

- Good tracking capability;
- High luminosity $L=1.6 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$;
- Wide momentum range: $1.5 \mathrm{GeV} / \mathrm{c} \sim 15 \mathrm{GeV} / \mathrm{c}$

pbar $p \rightarrow$ et e-

Rosenbluth cross section

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}}{8 M^{2} \sqrt{\tau(\tau-1)}}\left[\left|G_{M}\right|^{2}\left(1+\cos ^{2} \theta\right)+\frac{\left|G_{E}\right|^{2}}{\tau}\left(1-\cos ^{2} \theta\right)\right], \quad \tau=\frac{-q^{2}}{4 M^{2}}
$$

pbar p \rightarrow e+ e-

- Simulation done by Mainz and Orsay groups:
- 100 CPUs in Orsay,
- 300 CPUs Lyon
- 200 CPUs at GSI
- event generator (M. Zambrana)
- pi+pi- background suppression (D. Khaneft)

M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

pbar $p \rightarrow$ e+ e-

- Simulation done by Mainz and Orsay groups:
- 100 CPUs in Orsay,
- 300 CPUs Lyon
- 200 CPUs at GSI
- event generator (M. Zambrana)
- pi+pi- background suppression (D. Khaneft)

M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

Transition Distribution Amplitude

- Feasibility study by M. Mora Espi (PhD candidate)

PANDA experiment at FAIR:

 simulation: PANDA vs. TPE

$$
\frac{d \sigma}{d \cos \theta}=\sigma_{0}\left(1+A \cos ^{2} \theta\right)
$$

A: asymmetry due to TPE interference
$q^{2}=5.4(\mathrm{GeV} / \mathrm{c})^{2}$ forward lepton backward lepton
M. Sudol, et al. Eur. Phys. J. A 44, 373-384 (2010)

Is PANDA polarizable? $P_{y} \propto \sin (2 \theta) I m G_{E}^{*} G_{M}$,

- Innovative R\&D by B. Feher (PhD candidate)
- Close collaboration with experts from Mainz and IHEP.

Is PANDA polarizable? $P_{y} \propto \sin (2 \theta) \operatorname{Im} G_{E}^{*} G_{M}$,

- Innovative R\&D by B. Feher (PhD candidate)
- Close collaboration with experts from Mainz and IHEP.

Is PANDA polarizable? $P_{y} \propto \sin (2 \theta) \operatorname{Im} G_{E}^{*} G_{M}$,

- Innovative R\&D by B. Feher (PhD candidate)
- Close collaboration with experts from Mainz and IHEP.

- Essentially improve data in TL region
- Possibility to measure relative phase (G_{E}, G_{M})
- Determine contribution of TPE
- Other interesting EM processes

