

September 22, 2011 Erice School

J-PARC Project and Its Science

Shoji Nagamiya

J-PARC Center

Japan Atomic Energy Agency (JAEA) High Energy Accelerator Research Organization (KEK)

Joint Project between KEK and JAEA

- Phase 1 + Phase 2 = 1,890 Oku Yen (= \$1.89 billions if \$1 = 100 Yen).
- Phase 1 = 1,527 Oku Yen (= \$1.5 billions) for 8 years.
- JAEA: 860 Oku Yen (56%), KEK: 667 Oku Yen (44%).

Status (before the Earthquake)

Neutrino beamline

Focusing

Production of π

Graphite target

Decay volume completed

Measurement of v_{μ} disappearance gevents (Δm_{23}^2 , $\sin^2 2\theta_{23}$)

Single-µ ring events

- 104 events expected w/o osc
- 31 events detected

Clear disappearance and oscillation pattern observed!!

Consistent with MINOS/SK results

Tokai, Japan <u>J-PARC</u> (Japan Proton Accelerator Research Complex)

Material and Biological Science Facility 50 GeV Synchrotron (15 μA)

3 GeV Synchrotron (333 μA)

Neutrino Facility

Meson (K[±], K⁰_L, π[±]) beams of world highest intensity (x10 of BNL-AGS, x100 of KEK-PS)

400 MeV Linac

(350m)

Launched in 2009, Beam intensity and quality being improved Nuclear and particle physics experimental facility (Hadron Hall)

Nuclear & Hadron Physics at J-PARC

Hadron Hall as of 2008.10

Hadron Hall as of 2008.10

spectrometer

三日日日日日日日日日日

SKS

K1.8 line

E03	K.Tanida	SNU	Measurement of X rays from X ⁻ Atom	Stage 2		K1.8	preparation
E05	T.Nagae	Kyoto U	Spectroscopic Study of X-Hypernucleus, ${}^{12}xBe$, via the ${}^{12}C(K^-, K^+)$ Reaction	Stage 2	Day1 1	K1.8	preparation
E06	J.Imazato	КЕК	Measurement of T-violating Transverse Muon Polarization in K ⁺ -> $\pi^0\mu^+$ n Decays	Stage 1		K1.1BR	
E07	K.Imai, K.Nakazawa, H.Tamura	JAEA, Gifu U, Tohoku U	Systematic Study of Double Strangeness System with an Emulsion-counter Hybrid Method	Stage 2		K1.8	preparation
E08	A.Krutenkova	ITEP	Pion double charge exchange on oxygen at J-PARC	Stage 1		K1.8	
E10	A.Sakaguchi, T.Fukuda	Osaka U	Production of Nuetron-Rich Λ-Hypernuclei with the Double Charge-Exchange Reactions	Stage 2		K1.8	preparation
E11	T.Kobayashi	KEK	Tokai-to-Kamioka (T2K) Long Baseline Neutrino Oscillation Experimental Proposal	Stage 2		neutrino	data taking
E13	T.Tamura	Tohoku U	Gamma-ray spectroscopy of light hypernuclei	Stage 2	Day1 2	K1.8	preparation
E14	T.Yamanaka	Osaka U	Proposal for $K_L \rightarrow p^0$ n n-bar Experiment at J-PARC	Stage 2		KL	beamline tuning
E15	M.Iwasaki, T.Nagae	RIKEN, Kyoto U	A Search for deeply-bound kaonic nuclear states by in- flight 3He(K-, n) reaction	Stage 2	Day1	K1.8BR	preparation
E16	S.Yokkaichi	RIKEN	Electron pair spectrometer at the J-PARC 50-GeV PS to explore the chiral symmetry in QCD	Stage 1		high p	
E17	R.Hayano, H.Outa	U Tokyo, RIKEN	Precision spectroscopy of Kaonic ³ He 3d->2p X-rays	Stage 2	Day1	K1.8BR	beamline tuning
E18	H.Bhang, H.Outa, H.Park	SNU, RIKEN KRISS	Coincidence Measurement of the Weak Decay of ¹² LC and the three-body weak interaction process	Stage 2		K1.8	preparation
E19	M.Naruki	KEK	High-resolution Search for Q ⁺ Pentaquark in p ⁻ p -> K ⁻ X Reactions	Stage 2	Day1	K1.8	data taking
E21	Y.Kuno	Osaka U	An Experimental Search for Lepton Flavor Violating μ^e^- Conversion at Sensitivity of 10^{-16} with a Slow-Extracted Bunched Proton Beam	Stage 1		new beamlin e	

E22	S. Ajimura, A.Sakaguchi	Osaka U	Exclusive Study on the Lambda-N Weak Interaction in A=4 Lambda-Hypernuclei (Revised from Initial P10)	Stage 1	K1.8	
E26	K. Ozawa	KEK	Search for ω -meson nuclear bound states in the $\pi^{-}+^{A}Z$ -> n+ ^(A-1) (Z-1) ω reaction, and for ω mass modification in the in-medium ω -> $\pi^{0}\gamma$ decay.	Stage 1	K1.8	
E27	T. Nagae	Kyoto U	Search for a nuclear Kbar bound state K ⁻ pp in the $d(\pi^+, K^+)$ reaction	Stage 2	K1.8	preparation
P28	H. Fujioka	Kyoto U	Study of isospin dependence of kaon-nucleus interaction by in-flight 3He(K- ,n/p) reactions	approved as apart of E15	K1.8BR	
E29	H. Ohnishi	RKEN	Search for ϕ -meson nuclear bound states in the pbar + Z -> ϕ + ϕ (Z-1) reaction	Stage 1	K1.1	
E31	H. Noumi	RCNP, Osaka U	Spectroscopic study of hyperon resonances below KN threshold via the (K^{-} ,n) reaction on Deuteron	Stage 1	K1.8BR	
E40	K.Miwa	Tohoku U	Measurement of the cross sections of Σp scatterings	Stage 1	K1.8	
T25	S. Mihara	КЕК	Extinction Measurement of J-PARC Proton Beam at K1.8BR	Test experiment	K1.1BR	data taking
Т32	A. Rubba	ETH, Zurich	Towards a Long Baseline Neutrino and Nucleon Decay Experiment with a next-generation 100 kton Liquid Argon TPC detector at Okinoshima and an intensity upgraded J-PARC Neutrino beam	Test experiment	K1.1BR	data taking
P35	T. Kajita	ICRR, Tokyo	A test experiment to measure sub-GeV flux in the on- axis direction at the J-PARC neutrino beam	to be decided by E11 & Lab	neutrino	
T37	K. Inami	Nagoya U	Test of TOP counter for B-factory upgrade	Test experiment	K1.1BR	withdrawn
T38	T. Nanjo	Kyoto U	Proposal for Measuring Hadron Response at K1.1BR for KOTO Experiment	Test experiment	K1.1BR	completed
P39	K. Sakashita	KEK	A study of water Cherenkov detector for counting the number of neutrino at Near detector hall of J-PARC neutrino beam-line	to be decided by E11 & Lab	neutrino	
						IŎ

Hyperball

Hypernuclear γ-ray data

Hyperball

NPA 754 (2005) 58c

EPJ A33 (2007) 243

Hypernuclear γ-ray data

PRL 86 (2001) 4255

PRC 65 (2002) 034607

16 16 0

¹⁵O

¹⁵_AN

PRC 77 (2008) 054315

Shallow Potential Small (*I* · s) Force)

Implantation of Hadron in the Nucleus

A search for deeply bound kaonic nuclear states by in-flight ³He(K⁻,n) reaction

J-PARC E15 Experiment

prediction for nucleon density distribution by AMD

Recent Search for Kaonic Nuclei

J-PARC

high momentum beamline + E16 Spectrometer

Electron Pair Production in PHENIX

insight into halo nuclear structure through hypernuclei

Study of Neutron-Rich Hypernuclei J-PARC/E10

production of neutron-rich and exotic hypernuclei by the double charge-exchange (DCX) reaction

NCX: (K⁻, π ⁻), (π ⁺,K⁺) reaction

We can learn halo nuclei property $\Lambda N-\Sigma N$ mixing ΛNN 3-body force EOS of n-star core

🛟 Fermilab

KTeV Csl calorimeter dismantled by December

stacking

completed

KOTO Csl calorimeter

2011.Feb.08 16:30

with 2700 crystals

July 2010

October 2010: engineering run with 1800 crystals

Necessity for Hadron Hall extension

■ Too small area ⇔ KEK-PS x2.4, BNL-AGS x4.1

■ Only 4 beam lines ⇔ KEK-PS ~7 lines, BNL-AGS ~15 lines

-> Ineffective operation ("output per operation cost" is bad.)

Long waiting queue of approved experiments

(At K1.8/K1.8BR lines, 6960 hours = more than 6 years)

-> Discourage users in the world. Predominance will be lost.

- Highlights before March 11, 2011 (Earthquake)
 - Beam power has been steadily increasing: 200 kW for 3 GeV, 145 kW for Main Ring at 30 GeV.
 - 400kW long-run test completed. Goal is 1 MW.
 - Neutrino Facility: Started to take data at Super Kamiokande. 6 electron-neutrino candidate events were detected. Possibility of large θ_{13} . Encouragement to go to CP measurement.
 - Hadron Facility: About ready to run for many experiments.
 First data for penta-quark search were completed.
 - Materials and Life Facility: Neutron and muon beams already produced many fruitful data and the results are being published.
 - Need more and serious efforts towards "international usage" and toward creating "lively academic atmosphere".
 - Also, need more effort toward "industrial usage" of J-PARC

Status (after the Earthquake)

Immediately after the Earthquake

Outside of LINAC building is heavily damaged.

We are getting water from an outside fire-hydrant, as original cooling water system has not yet been fixed.

Placing a temporal bridge for carrying in materials for repair.

Inside of underground tunnel immediately after the Earthquake

Many piles reached to a basement rock minimized a direct damage to the tunnel. However, groundwater leaked into the tunnel and the water depth increased to 10 cm (100 tons) within two weeks after the earthquake.

Repairing water leaks in the tunnel is almost completed.

• The floor level sagged 4 cm downward in the tunnel. Because accelerator cavities should be aligned within ± 1 mm to each other along the beam line for the operation, they have been leveled and realigned where necessary.

Restoration work on the cooling water system and power supply is going smoothly.

Realigned accelerator cavities of DTL and SDTL were tested for watertightness.

3 GeV Synchrotron (RCS)-1

• There were severe damages on many facilities around the RCS building.

• The restoration work was started after repaved roads for carrying in materials and instruments for the work. The work is progressing smoothly.

The road was repaved.

The bent stage was repaired. Power has been supplied to the RCS building.

3 GeV Synchrotron (RCS)-2

- Many basements for the equipment were re-leveled.
- Replacing damaged water pipes and repairing many damaged parts.

Tilted condenser transformers were straightened.

Water pipes were replaced, being ready for passing water.

Reinforced foundation for a cooling tower (right) Refining work of pumps and motors (left)

3 GeV Synchrotron (RCS)-3

No obvious damages were observed. (Photo taken on March 29).

Joint Project between KEK and JAEA

50 GeV Synchrotron (MR)-1

• Repair of water leaks has been done. The facilities for electric power supply and cooling water supply have been restored as well.

- All electromagnets (~400) are being realigned at 5 magnets/day.
- Magnets moved more than 1 cm are realigned to change a stage position (Photos).

Tomagnet Hanging up the magnet

Pulling out the stage to put new longer height-adjust screws

Jacking up an electromagnet to make a space between the magnet and the stage

Sometimes we need to place an adapter to put a new longer anchor bolt.

50 GeV Synchrotron (MR)-2

There were no serious damages on all MR equipment/instruments, such as electromagnets.
 It, however, appeared they misaligned in both vertical and horizontal directions.

• Some electromagnets that misaligned greatly are realigned with replacing a stage and/or an anchor part.

- Inspection of the high-frequency power amplifying system has been completed.

Red: Reference positions of electromagnets Blue: Actual positions after the earthquake (Please note the magnitude of displacement is amplified x2000.) Electromagnet displacement in a vertical direction

50 GeV Synchrotron (MR)-3

• Not only restoration but also improvement/upgrade of the equipment/facility are conducted to increase beam intensity when the operation will be resumed.

Putting new hanging racks on ceiling for pipes for new cooling system to supply clear water

Materials & Life Science Experimental Facility (MLF)-1

The road was re-opened after filling depressions with pebbles. to repair the foundation.

Inspection by the fire department

Materials & Life Science Experimental Facility (MLF)-2

Immediately after the Earthquake

Immediately after the Earthquake

Putting new clay to maintain the level

An attached building to the west side of the main MLF building sank ~20 cm. The building is jacked up with 24 hydraulic lifters (blue). Created interspace will be filled with cement injected from holes of the floor.

Repairing cracks on the floor of 3NBT tunnel (left), and repairing a joint wall with removing concrete (right).

Materials & Life Science Experimental Facility (MLF)-3

Immediately after the Earthquake

Reassembling work of shielding blocks for neutron beams in the 2nd experimental hall (above). Inspection of the inside of the muon beam facility after removing shielding blocks (right). This area does not have any serious damage.

Neutrino Experimental Facility-1

Immediately after the Earthquake

AC device tilted toward a depression of a road. Many pipes were damaged

Repairing roads and plumbing have been completed.

Realignment work of electromagnets (above) and superconducting magnets (below) is progressing smoothly. We also try to improve cooling power.

Neutrino Experimental Facility-2

- Inspection of highly radiated parts, such as a target station, is progressing smoothly.
- The soundness of all equipment and devices, including three horns, have been visually confirmed.

The soundness of Beam Dump and Decay Volume was visually confirmed. There were no water leaks.

The 3rd horn hung by a crane for inspection (left) and the 3rd horn in a shielding maintenance area.

Hadron Experimental Facility-1

Immediately after the Earthquake

Repairing roads and plumbing have been completed.

Hadron Experimental Facility-2

Electromagnets in the switchyard need to be realigned. The work is progressing smoothly.

Hadron Experimental Facility-3

 After removing shields temporally, the soundness of all equipment and devices have been confirmed.

No realignments are required.

Inspection work in Hadron Hall

J-PARC Recovery Schedule (@2011.5.20) 2011 2012 10 12 3 4 5 6 7 8 9 11 1 2 Full Recovery Work **Emergency Recovery** Infrastructure **Beam Test** User Operation Start Beam Linac Test with Commissioning Investigation Alignment electricity Recovery **MLF User Operation** Test with Investigation electricit RCS Recovery **Cooling Water 3GeV** synchrotron Test with NU or HD Operation Investigation electricity Recovery MR 50GeV synchrotron Investigation MLF MLF User Program Beam **BL** Components New Hg Target Shielding recovery Injection Materials&Life Extended Building **Experimental Facility** HD Investigation HD Experiment Hadron Experimental Recovery Beam Facility Injection NU Investigation **NU Experiment** Beam Recovery Neutrino Experimental Injection Facility

Summary of Damage

- No Tsunami Effect
 - We prepared up to 8 m Tsunami.
- Main Buildings were almost OK
 - Many underpins for major buildings.
- However, many utility buildings, roads, and added buildings had significant damage.
- When to recover ?
 - Aiming at recovering by the end of this year.
 - Expect to have 2 cycle (about 2 month) running this year.
- Operation of Next Fiscal Year
 - Full 9 cycle (200 day) operations for users.

Thank you!