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Motivation

With evolving techniques, lattice QCD should shed light
on questions such as:

� Last decade saw proliferation of new states above
open-charm threshold. What are they?

� Are there intrinsic gluonic excitations in hadrons?
� Do glueballs exists as observable resonances?
� Do molecules form? Are there tetraquark states?
� Why is the observed baryon spectrum not

reproduced by the quark model?



Techniques for
excited-state
spectroscopy



Field theory on a Euclidean lattice

� Monte Carlo simulations are only
practical using importance
sampling

� Need a non-negative weight for each
field configuration on the lattice

Minkowski → Euclidean

� Problem: direct information on scattering is lost
and must be inferred indirectly.

� Benefit: can isolate lightest states in the spectrum.
� For excitations and resonances, must use a

variational method.



Variational method in Euclidean QFT

� Ground-state energies found from t→∞ limit of:

Euclidean-time correlation function

c(t) = 〈0| Φ(t) Φ†(0) |0〉

=
∑

k,k′
〈0| Φ|k〉〈k|e−Ĥt|k′〉〈k′|Φ† |0〉

=
∑

k

|〈0| Φ|k〉|2 e−Ekt

� So limt→∞ c(t) = Ze−E0t

� Variational idea: find operator Φ to maximise
c(t)/c(t0) from sum of basis operators Φ =

∑

a caϕa

[C. Michael and I. Teasdale. NPB215 (1983) 433]
[M. Lüscher and U. Wolff. NPB339 (1990) 222]



Excitations

Variational method

If we can measure Cab(t) = 〈0|ϕa(t)ϕ†b(0)|0〉 for all a,b
and solve generalised eigenvalue problem:

C(t) v = λC(t0) v

then
lim

t−t0→∞
λk = e−Ekt

For this to be practical, we need:
� a ‘good’ basis set that resembles the states of

interest
� all elements of this correlation matrix measured



Quarks on the computer

� Most computer time spent handling quark dynamics
� Calculation of two-point correlator between

isovector quark bilinears:

C(t) =

∫

DUDψ̄Dψ ψ̄uΓaψd(t) ψ̄dΓbψu(0) e−SG[U]+ψ̄fMf [U]ψf

∫

DUDψ̄Dψ e−SG[U]+ψ̄fMf [U]ψf

=

∫

DU Tr ΓaM−1
d (t,0)ΓbM−1

u
(0, t) detM2[U] e−SG[U]

∫

DU detM2[U] e−SG[U]

� Quarks in lagrangian → determinant
� Quarks in measurement → propagators

Both present their own specific problems



Improving measurements with quarks

� M−1 is too large to manipulate directly ...
� ... but can solve the linear system Mx = y: point

propagator method

� Smearing: construct good
creation operators from
extended objects

Distillation
New technique

� smearing extracts
relevant modes

� much smaller
propagation problem

� freedom to build
operators ...

� ... which enables
variational method,
isoscalars, 2 hadrons, ...



Spin on the lattice

O(3) Oh

� Lattice regulator breaks
SO(3)→ O

� Spin no longer a good
quantum number

� States classified according
to irreps of Oh not JP

� O has 5 irreps: {A1,A2,E,T1,T2}
� To continuum: subduce reps
O(3)→ Oh

A1 A2 E T1 T2
J = 0 1
J = 1 1
J = 2 1 1
J = 3 1 1 1
J = 4 1 1 1 1

...
...

...
...

...
...

� Enough to search for
degeneracy patterns in the
spectrum? 4 ≡ 0⊕ 1⊕ 2!

� Start with continuum
operators built from
derivatives

� Find patterns in operator
overlaps



Results



Isovector meson spectrum (mπ = 700 MeV)

� Below 2GeV, data resembles quark model
� First identification of the hybrid singlet/triplet?
� Still at unphysical mπ (and not in continuum limit)
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Isoscalar meson spectrum

0.5

1.0

1.5

2.0

2.5

exotics

isoscalar

isovector

YM glueball

negative parity positive parity

� V = 163 using GPUs to compute all-t propagators
� Percent-level statistical precision possible
� light-strange mixing computed
� BUT - 0++ not shown here!

[J. Dudek et.al. PRD83:111502 (2011)]



Charmonium

PRELIMINARY [G.Moir, L.Liu, P.Vilaseca, MP, S.Ryan]
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� Distilled charm quarks - good statistical precision
again

� Statistical error on 1−+ hybrid ≈ 17 MeV



N and ∆ excitations

[Edwards et.al.: arXiv:1104.5152 ]
mπ = 524MeV mπ = 396MeV
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� Large operator basis,
inspired by quark model

� With bigger operator basis,
new states emerge

� More data closer to
physical mπ required to
understand the Roper
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Scattering on the
Euclidean lattice



Hadrons in a finite box: scattering
� On a finite lattice with periodic b.c., hadrons have quantised

momenta; p = 2π
L

�

nx,ny,nz
	

� Two hadrons with total P = 0 have a discrete spectrum
� These states can have same quantum numbers as those

created by q̄Γq operators and QCD can mix these

� This leads to shifts in the
spectrum in finite volume

� In an experiment, this is
the same physics that
makes resonances

� Lüscher’s method - relate
elastic scattering to energy
shifts

Toy model

H =

�

m g

g 4π
L

�
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I = 2 ππ scattering

[Dudek et.al.: PRD83 071504 (2011)]
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I = 1 scattering using distillation

[C.Lang et.al. arXiv:1105.5636]

� Number of groups have measured Γρ on the lattice.
� Need non-zero relative momentum of pions in final

state (P-wave decay)
� New calculation using distillation
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I = 1 ππ phase shift

[C.Lang et.al. arXiv:1105.5636]

� mπ ≈ 266 MeV
� Better resolution by

studying moving ρ as
well

� ρ resonance resolved
clearly, with
mρ = 792(7)(8) MeV

� gρππ = 5.13(20)
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I=0 π − π scattering - measuring 〈ππ|ππ〉

� Stochastic insertion into distillation space works
well
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[C. Morningstar et.al.: PRD83:114505 (2011)]



Conclusions

� Current state-of-the-art lattice simulations include
quark dynamics and are approaching the physical
pion masses

� The variational method is well established as the
best way of studying excitations, scattering states
and resonances

� New techniques enable the variational method to
be exploited in more interesting ways

� Good resolution of the excited-state spectra of
mesons and baryons seen up to ≈ 2.5 GeV: caveat -
up/down quarks still heavy. Method working in
charmonium sector

� Good resolution of isoscalar spectrum
� Scattering states in basis are essential
� First simulations of scattering using new methods

reported recently - results are promising.


