Hadron spectroscopy from lattice QCD

Mike Peardon

School of Mathematics, Trinity College Dublin, Ireland

$33^{\text {rd }}$ International School of Nuclear Physics
Erice, $22^{\text {nd }}$ September 2011

- Motivation
- Lattice techniques for spectroscopy
- Variational method
- Smearing and distillation
- Spin
- Results
- Isovector mesons
- Isoscalar mesons
- Charmonium
- Baryons
- Scattering and resonances

Motivation

With evolving techniques, lattice QCD should shed light on questions such as:

- Last decade saw proliferation of new states above open-charm threshold. What are they?
- Are there intrinsic gluonic excitations in hadrons?
- Do glueballs exists as observable resonances?
- Do molecules form? Are there tetraquark states?
- Why is the observed baryon spectrum not reproduced by the quark model?

Techniques for excited-state spectroscopy

Field theory on a Euclidean lattice

- Monte Carlo simulations are only practical using importance sampling
- Need a non-negative weight for each field configuration on the lattice

Minkowski \rightarrow Euclidean

- Problem: direct information on scattering is lost and must be inferred indirectly.
- Benefit: can isolate lightest states in the spectrum.
- For excitations and resonances, must use a variational method.

Variational method in Euclidean QFT

- Ground-state energies found from $t \rightarrow \infty$ limit of:

Euclidean-time correlation function

$$
\begin{aligned}
c(t) & =\langle 0| \Phi(t) \quad \Phi^{\dagger}(0)|0\rangle \\
& =\sum_{k, k^{\prime}}\langle 0| \Phi|k\rangle\langle k| e^{-\hat{H} t}\left|k^{\prime}\right\rangle\left\langle k^{\prime}\right| \Phi^{\dagger}|0\rangle \\
& \left.=\sum_{k}|\langle 0| \Phi| k\right\rangle\left.\right|^{2} \quad e^{-E_{k} t}
\end{aligned}
$$

- So $\lim _{t \rightarrow \infty} c(t)=Z e^{-E_{0} t}$
- Variational idea: find operator ϕ to maximise $c(t) / c\left(t_{0}\right)$ from sum of basis operators $\Phi=\sum_{a} c_{a} \phi_{a}$
[C. Michael and I. Teasdale. NPB215 (1983) 433] [M. Lüscher and U. Wolff. NPB339 (1990) 222]

Excitations

Variational method

If we can measure $C_{a b}(t)=\langle 0| \phi_{a}(t) \phi_{b}^{\dagger}(0)|0\rangle$ for all a, b and solve generalised eigenvalue problem:

$$
\mathbf{C}(t) \underline{v}=\lambda \mathbf{C}\left(t_{0}\right) \underline{v}
$$

then

$$
\lim _{t-t_{0} \rightarrow \infty} \lambda_{k}=e^{-E_{k} t}
$$

For this to be practical, we need:

- a 'good' basis set that resembles the states of interest
- all elements of this correlation matrix measured

Quarks on the computer

- Most computer time spent handling quark dynamics
- Calculation of two-point correlator between isovector quark bilinears:

$$
\begin{aligned}
C(t) & =\frac{\int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \bar{\psi}_{u} \Gamma^{a} \psi_{d}(t) \bar{\psi}_{d} \Gamma^{b} \psi_{u}(0) e^{-S_{G}[U]+\bar{\psi}_{f} M_{f}[U] \psi_{f}}}{\int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_{G}[U]+\bar{\psi} f M_{f}[U] \psi_{f}}} \\
& =\frac{\int \mathcal{D} U \operatorname{Tr} \Gamma^{a} M_{d}^{-1}(t, 0) \Gamma^{b} M_{u}^{-1}(0, t) \operatorname{det} M^{2}[U] e^{-S_{G}[U]}}{\int \mathcal{D} U \operatorname{det} M^{2}[U] e^{-S_{G}[U]}}
\end{aligned}
$$

- Quarks in lagrangian \rightarrow determinant
- Quarks in measurement \rightarrow propagators

Both present their own specific problems

Improving measurements with quarks

- M^{-1} is too large to manipulate directly ...
- ... but can solve the linear system $M \underline{x}=\underline{y}$: point propagator method
- Smearing: construct good creation operators from extended objects

Distillation

New technique

- smearing extracts relevant modes
- much smaller propagation problem
- freedom to build operators ...
- ... which enables variational method, isoscalars, 2 hadrons, ...

Spin on the lattice

- Lattice regulator breaks $\mathrm{SO}(3) \rightarrow O$
- Spin no longer a good quantum number
- States classified according to irreps of O_{h} not J^{P}
- O has 5 irreps: $\left\{A_{1}, A_{2}, E, T_{1}, T_{2}\right\}$
- To continuum: subduce reps $O(3) \rightarrow O_{h}$

	A_{1}	A_{2}	E	T_{1}	T_{2}
$J=0$	1				
$J=1$			1	1	
$J=2$			1		1
$J=3$		1		1	1
$J=4$	1		1	1	1
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots

- Enough to search for degeneracy patterns in the spectrum? $4 \equiv 0 \oplus 1 \oplus 2$!
- Start with continuum operators built from derivatives
- Find patterns in operator overlaps

Results

Isovector meson spectrum ($m_{\pi}=700 \mathrm{MeV}$)

- Below 2 GeV , data resembles quark model
- First identification of the hybrid singlet/triplet?
- Still at unphysical m_{π} (and not in continuum limit)

Isoscalar meson spectrum

- $V=16^{3}$ using GPUs to compute all-t propagators
- Percent-level statistical precision possible
- light-strange mixing computed
- BUT - 0^{++}not shown here!
[J. Dudek et.al. PRD83:111502 (2011)]

Charmonium

- Distilled charm quarks - good statistical precision again
- Statistical error on 1^{-+}hybrid $\approx 17 \mathrm{MeV}$

N and Δ excitations

[Edwards et.al.: arXiv:1104.5152]

- Large operator basis, inspired by quark model
- With bigger operator basis, new states emerge
- More data closer to physical m_{π} required to understand the Roper

Scattering on the Euclidean lattice

Hadrons in a finite box: scattering

- On a finite lattice with periodic b.c., hadrons have quantised momenta; $\underline{p}=\frac{2 \pi}{L}\left\{n_{x}, n_{y}, n_{z}\right\}$
- Two hadrons with total $P=0$ have a discrete spectrum
- These states can have same quantum numbers as those created by $\bar{q}\ulcorner q$ operators and QCD can mix these

Toy model

- This leads to shifts in the spectrum in finite volume
- In an experiment, this is the same physics that makes resonances
- Lüscher's method - relate elastic scattering to energy shifts

$$
H=\left(\begin{array}{cc}
m & g \\
g & \frac{4 \pi}{L}
\end{array}\right)
$$

$I=2 \pi \pi$ scattering

[Dudek et.al.: PRD83 071504 (2011)]

- S-wave phase shift
- No mass dependence observed
- Consistent with experimental data
- D-wave measured too
- Scattering length determined
- Compares well with other lattice determinations

$I=1$ scattering using distillation

[C.Lang et.al. arXiv:1105.5636]

- Number of groups have measured Γ_{ρ} on the lattice.
- Need non-zero relative momentum of pions in final state (P-wave decay)
- New calculation using distillation

interpolator set:
$\begin{array}{cc}q q & \pi \pi \\ 1: O_{1,2,3,4,5}, & O_{6} \\ 2: O_{1,2,3,4}, & O_{6}\end{array}$
3: $O_{1,2,3}, \quad O_{6}$
4: $O_{2,3,4,5}, \quad O_{6}$
$5: O_{1} \quad, \quad O_{6}$
6: $O_{1,2,3,4,5}$
7: $O_{1,2,3,4}$
8: $O_{1,2,3}$

$I=1 \pi \pi$ phase shift

[C.Lang et.al. arXiv:1105.5636]

- $m_{\pi} \approx 266 \mathrm{MeV}$
- Better resolution by studying moving ρ as well
- ρ resonance resolved clearly, with $m_{\rho}=792(7)(8) \mathrm{MeV}$
- $g_{\rho \pi \pi}=5.13(20)$

$\mathrm{I}=0 \pi-\pi$ scattering - measuring $\langle\pi \pi \mid \pi \pi\rangle$

- Stochastic insertion into distillation space works well

[C. Morningstar et.al.: PRD83:114505 (2011)]

Conclusions

- Current state-of-the-art lattice simulations include quark dynamics and are approaching the physical pion masses
- The variational method is well established as the best way of studying excitations, scattering states and resonances
- New techniques enable the variational method to be exploited in more interesting ways
- Good resolution of the excited-state spectra of mesons and baryons seen up to $\approx 2.5 \mathrm{GeV}$: caveat up/down quarks still heavy. Method working in charmonium sector
- Good resolution of isoscalar spectrum
- Scattering states in basis are essential
- First simulations of scattering using new methods reported recently - results are promising.

