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Figure 1: Spectrum of the known charmonium states. Blue squares represent
the charmonium states that are established and well measured, red squares show
charmonium(-like) states which were discovered recently at the B-factories. The
empty rectangles indicate the prediction by the potential models [2]. The horizontal
line shows the open-charm threshold.

2 X(3872)

The X(3872) meson was discovered by Belle [3] in B± ⇥ X(3872)K± with X(3872)⇥
J/⇤⇥+⇥° in 2003, and quickly confirmed by the BaBar, CDF and D0 experiments [3].
Its mass is known very precisely, 3871.4± 0.6 MeV/c2, and its width is less than 2.3

MeV at 90% confidence level. This state is very close to the D§0D
0

threshold which
is at (3871.8 ± 0.4) MeV/c2. This resonance was also observed in the final state
J/⇤� [4], which implies that its C quantum number is equal to +1. The study of the
⇥+⇥° invariant mass distribution by Belle and an angular analysis by CDF shows that
JPC = 1++ is favored (although 2++ is still possible) [4]. It has also to be noted that
a search for a charged partner was performed by BaBar, but no signal was found [4].

The BaBar experiment has recently performed an update of the study of the
decays of B+ ⇥ X(3872)K+ and B0 ⇥ X(3872)K0 with X(3872) ⇥ J/⇤⇥+⇥° [5],
using 413 fb°1 of data. The invariant masses of the J/⇤⇥+⇥° combination are shown
in Fig. 2 for the two channels. A clear signal is observed in the charged channel,
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Why ccbar potential？
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Figure 2
Schematic representations of molecular states, diquark-diantiquark tetraquark mesons, and quark-antiquark-
gluon hybrids.

identify unambiguously a light multiquark state in an environment of many broad and often
overlapping conventional states. The charmonium spectrum is better defined, so new types of states
can potentially be more easily delineated from conventional charmonium states. The observation
of the X(3872), the first of the XYZ particles to be seen, allowed researchers to hope that a
multiquark state had definitively been observed.

Two generic types of multiquark states have been described in the literature. The first is a
molecular state, sometimes referred to as a deuson (41), that comprises two charmed mesons
bound together to form a molecule. These states are by nature loosely bound. Molecular states
bind through two mechanisms: quark/color exchange interactions at short distances and pion
exchange at large distance (5, 41, 42) (see Figure 2), although pion exchange is expected to
dominate (5). Molecular states are generally not isospin eigenstates, resulting in distinctive decay
patterns. Because the mesons inside the molecule are weakly bound, they tend to decay as if they
are free. The details of this process are reviewed by Swanson (5).

The second type of multiquark state is a tightly bound four-quark state, known as a tetraquark,
which is predicted to have properties different from those of a molecular state. In the model of
Maiani et al. (43) the tetraquark is described as a diquark-diantiquark structure in which the quarks
group into color-triplet scalar and vector clusters and in which the interactions are dominated by
a simple spin-spin interaction (see Figure 2). Here, strong decays are expected to proceed via
rearrangement processes, followed by dissociation, that give rise to (for example) decays such
as X → ρJ/ψ → ππJ/ψ or X → DD̄∗ → DD̄γ . A prediction that distinguishes multiquark
states containing a cc̄ pair from conventional charmonia is the possible existence of multiplets that
include members with nonzero charge (e.g., [cuc̄d̄]), strangeness (e.g., [cd cs]), or both (e.g., [cucs])
(44).

2.3. Charmonium Hybrids
Hybrid mesons are states characterized by an excited gluonic degree of freedom (see Figure 2),
which have been described by many different models and calculational schemes (45). A compelling
description, supported by lattice QCD (46, 47), views the quarks as moving in adiabatic potentials
produced by gluons by analogy to the atomic nuclei in molecules moving in the adiabatic potentials
produced by electrons. The lowest adiabatic surface leads to the conventional quarkonium spec-
trum, whereas the excited adiabatic surfaces result from putting the gluons into more complicated
color configurations. In the flux-tube model (48), the lowest excited adiabatic surface corresponds
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BaBar Collaboration S. Godfrey and S. L. Olsen, 
Ann. Rev. Nucl. Part. Sci. 58, 51 (2008)

✦ Exotic XYZ charmonium-like mesons

The XYZ mesons are expected to be 
good candidates for non-standard 
quarkonium mesons

“Standard” states can be 
defined in potential models

“Exotic” = “Non-standard”?



Why ccbar potential？
✦ qqbar interquark potential in quark models

Vcc̄ = �4
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Cornell potential spin-dependent potential 

• Spin-spin, tensor and spin-orbit terms appear as corrections in the 1/mq expansion.

• Functional forms of the spin-dependent terms are determined by one-gluon exchange.
                 → Properties of higher charmonium states predicated 
                   in potential models may suffer from large uncertainties.

S. Godfrey and N. Isgur, PRD 32, 189 (1985). 
T. Barnes, S. Godfrey and E. S. Swanson, PRD 72, 054026 (2005)

A reliable charmonium potential directly derived 
from first principles QCD is very important.



Why ccbar potential？
✦ Static interquark potential from Wilson loop

Lattice QCD simulations
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Lattice QCD simulations
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0 = 0.49(1) (α = (3/4)c)

Y. Koma (Numazu)

Spin-independent potential spin-spin potential 

G. S. Bali, Phys. Rept. 343, 1 (2001).

•  The static potential obtained from Wilson loops have been precisely calculated from lattice.

•  Relativistic corrections are classified in powers of 1/mq within framework of pNRQCD.
 → spin-spin potential induced by 1/mq2 correction exhibits short range attraction.
     cf. short range repulsion is required in phenomenology.

short range attraction

Cornell potential



How to calculate ccbar potential？

1. Equal-time BS wavefunction

2. Schrödinger equation with non-local potential 

3. Velocity expansion 

��(r) =
�

x

�0|q(x)�q(x + r)|qq̄;JPC⇥

�

x,x�,y�

⇤0|q̄(x, t)�q(x + r, t) (q̄(x⇤, tsrc)�q(y⇤, tsrc))
† |0⌅

=
�

n
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n (t�tsrc)

t⇥t0���⇥ A0��(r)e�M�
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��
2

2µ
��(r) +

�
dr�U(r, r�)��(r�) = E���(r)

time

x

x+ r

S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89.
Y. Ikeda and H. Iida, arXiv:1102.2097 [hep-lat].

U(r�, r) = {V (r) + VS(r)SQ · SQ + VT(r)S12 + VLS(r)L · S + O(⇥2)}�(r� � r)



How to calculate ccbar potential？
5. Projection to “S-wave”  φΓ(r) → φΓ(r; A1+)

6. Linear combination

 
The quark kinetic mass mq is essentially involved in the definition of the potentials.
Under a simple, but reasonable assumption of

�
�⇥

2

mq
+ V (r) + Sq · SqVS(r)

�
��(r) = E���(r)

lim
r��

VS(r) = 0

2

BS wavefunction [11, 12]. After an appropriate projec-
tion with respect to discrete rotation, we can get the
BS wave function projected in the A+

1 representation,
⇤�(r) ⇧ ⇤�(A

+
1 ; r), which corresponds to the S-wave in

continuum theory at low energy. Details of the A+
1 pro-

jection are described in Ref. [13]. We simply denote the
A+

1 projected BS wave function by ⇤�(r) hereafter.
The interquark potential V� can be determined from

the projected BS wave function ⇤�(r) through the sta-
tionary Schrödinger equation [18]:

V�(r)� E� =
1

mq

⌥2⇤�(r)

⇤�(r)
, (4)

where mq is the quark kinetic mass and ⇤2 is defined
by the discrete Laplacian with nearest-neighbor points.
The energy eigenvalue E� of the stationary Schrödinger
equation is supposed to be M��2mq. Here we note that
this definition of the potential itself requires the informa-
tion of the quark mass mq, while the rest mass of heavy
quarkonium state M� can be determined by the standard
hadron spectroscopy.

The central potential calculated from 1S quarkonium
states can be decomposed into the spin-independent and
-dependent parts: V�(r) = Vqq(r) + Vspin(r)Sq · Sq̄,
where Vqq̄ represents the spin-independent central po-
tential while Vspin corresponds to the spin-spin potential.
For the PS and V channels, the spin operator Sq ·Sq̄ can
be easily replaced by expectation values �3/4 and 1/4,
respectively. Therefore the potential Vqq̄ can be evalu-
ated by a linear combination of potentials calculated from
the PS and V channels as Vqq(r) =

1
4 (VPS(r) + 3VV(r)).

As we previously pointed out, the quark kinetic mass
mq is a key ingredient in order to calculate the qq po-
tential defined in Eq. (4) from the BS wave function.
How can we determine the quark mass? In the initial
attempt [8], mq was approximately evaluated by a half
of the vector quarkonium mass MV /2. However such
an approximate treatment loses a proper quark-mass de-
pendence of the qq potential, which guarantees that the
potential defined here is smoothly connected to the static
qq potential from Wilson loops in the mq ⇧ ⌃ limit.

We may alternatively determine the quark mass from
the gauge dependent pole mass, which can be measured
by the quark two-point function in the Landau gauge.
We instead propose a novel method which is applicable
even in the Coulomb gauge as follows. We first consider
the spin-dependent potential, which is given by

Vspin(r)��Ehyp =
1

mq

�
⌥2⇤V(r)

⇤V(r)
� ⌥2⇤PS(r)

⇤PS(r)

⇥
, (5)

where �Ehyp denotes a di⇥erence between energy eigen-
values of the PS and V channels. Indeed, the value of
�Ehyp is nothing but hyperfine mass splittingMV�MPS.

Suppose that limr⇥⇤ Vspin(r) = 0, we can estimate the

TABLE I: Results of the quark mass mq, the Cornell param-
eters A, ⇥ and the ratio A/⇥ in this approach. Their extrap-
olated values to the mq � ⇥ limit are also compared with
the Wilson loop results taken from Ref. [7].

� amq A a2⇥ A/a2⇥
0.11456 0.493(18) 0.663(23) 0.0477(28) 13.9(7)
0.10190 0.833(31) 0.470(16) 0.0435(25) 10.8(6)
0.09495 1.006(41) 0.430(16) 0.0426(27) 10.1(6)
0.08333 1.288(30) 0.381(10) 0.0435(18) 8.8(4)
0.07490 1.484(22) 0.360(7) 0.0443(13) 8.1(3)
0.06667 1.720(18) 0.341(6) 0.0442(11) 7.7(3)

— ⇥ 0.236(39) 0.0465(34) 6.1(1.1)
Wilson loop 0.281(5) 0.0466(2) 6.03(11)

quark kinetic mass mq through the following formula:

mq = lim
r⇥⇤

1

�Ehyp

�
⌥2⇤PS(r)

⇤PS(r)
� ⌥2⇤V(r)

⇤V(r)

⇥
, (6)

where �Ehyp = MV � MPS is measured by the stan-
dard hadron spectroscopy. As a result, one can self-
consistently determine both the spin-independent and -
dependent qq potentials, and also the quark kinetic mass
within a single set of four-point correlation functions.
To verify our new proposal, we have performed

quenched lattice QCD simulations on a lattice L3 ⇤ T =
323 ⇤ 48 with the standard single-plaquette gauge action
at � = 6/g2 = 6.0, which corresponds to a lattice cuto⇥
of a�1 ⌅ 2.1 GeV (a ⌅ 0.093fm). The spatial lattice
size corresponds to La ⌅ 3 fm. We fix the lattice to
Coulomb gauge. The heavy-quark propagators are com-
puted using the relativistic heavy quark (RHQ) action
with relevant one-loop coe⌅cients of the RHQ [14, 15].
The RHQ action utilized here is a variant of the Fermilab
approach [16] and can remove large discretization errors
introduced by large quark mass.
To examine the infinitely heavy quark limit, we adopt

the six values of the hopping parameter ⇥, which cover
the range of the spin-averaged mass of 1S quarkonium
states Mave = 1

4 (MPS + 3MV) = 1.97 - 5.86 GeV. We
calculate quark propagators with a wall source which are
located at tsrc/a = 4. Dirichlet boundary conditions are
imposed for time direction. Our results are analyzed on
150 configurations for every hopping parameters. In this
letter, we use only the on-axis data of the BS wave func-
tion since the o⇥-axis data may su⇥er more from the ro-
tational symmetry breaking e⇥ect.
First of all, in Fig. 1, we plot a di⇥erence of ratios

of ⌥2⇤V/⇤V and ⌥2⇤PS/⇤PS as a function of spatial dis-
tance r at ⇥ = 0.10190, which is close to the charm quark
mass [17], as a typical example. The ratios of ⌥2⇤�/⇤�

are evaluated by a weighted average of data points in the
range of (t� tsrc)/a = 21 - 23. At a glance, the value of
⌥2⇤V/⇤V�⌥2⇤PS/⇤PS certainly reaches a non-zero con-
stant value at large distances, which turns out to be the

mq = lim
r��

�1
�Ehyp

�
�2�V(r)
�V(r)

� �
2�PS(r)
�PS(r)

�

V (r) = Eave +
1

mq

�
1
4
�2�PS(r)
�PS(r)

+
3
4
�2�V(r)
�V(r)

�

VS(r) = Ehyp +
1

mq

�
��

2�PS(r)
�PS(r)

+
�2�V(r)
�V(r)

�

T. Kawanai and S. Sasaki, arXiv:1102.3246 [hep-lat].

S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89.
Y. Ikeda and H. Iida, arXiv:1102.2097 [hep-lat].



1. Quenched lattice QCD simulation

2. Nf =2+1 dynamical QCD simulation



Lattice Set up

▶ Quenched QCD simulation

▶ Lattice size : L3 × T = 323 × 48 (~3fm3)

▶ plaquette gauge action  β=6.0  (a=0.093 fm, a-1=2.1GeV)
+ RHQ action with tad-pole improved one-loop PT coefficients

▶ 6 hopping parameters :  0.06667 ≤ κQ ≤ 0.11456
                                     1.87  GeV ≤ mpseudo  ≤ 5.83 GeV                       

▶ Statistics : 150 configs

▶ Wall source 

▶  Coulomb gauge fixing 

q

q
3fm

0.093fm

time

x

x+ r

 Y. Kayaba et al. [CP-PACS Collaboration], JHEP 0702, 019 (2007).



Pseudo scalar JP= 0- Vector JP= 1-
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Result; qqbar wave function

��(r) =
�

x

�0|q(x)�q(x + r)|qq̄;JPC⇥

▶ Normalization  ∫dr3 ψ2(r) = 1
▶ BS wave functions vanish at  r ~ 1fm 
▶ Size of wave function with heavier quark mass become smaller.
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Consistent with the Wilson loops in the mq → ∞ limit

V (r) = �A

r
+ �r + V0

Cornell parameterization



1. Quenched lattice QCD simulation

2. Nf =2+1 dynamical QCD simulation



Lattice Set up

▶ 2+1 flavor dynamical gauge configurations 
generated by PACS-CS collaboration.

▶ Lattice size : L3 × T = 323 × 64 (~3fm3)

▶ Iwasaki gauge action β=1.9  (a≈0.091 fm, a-1≈2.3GeV)
+ RHQ action with partially non-perturbative RHQ parameters.

▶ Light quark mass : mπ = 156(7) MeV, mK = 553(2)MeV
Charm quark mass : mave(1S) =3.069(2) GeV, mhyp(1S)=111(2) MeV

▶ Statistics : 198 configs

▶ Wall source 

▶  Coulomb gauge fixing 

q

q
3fm

0.091fm

time

x

x+ r



Result; spin-independent ccbar potential 
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▶ we take a weighted average of data points in the wide range of (t-tsrc)/a = 34-44
▶ A discretization error appears especially near the origin.



Result; spin-independent ccbar potential 
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▶ The charmonium potential obtained 
from the BS wave function resembles 
the NRp model.

This work Static NRp model
A 0.714(30) 0.515(2) 0.7281

√σ [GeV] 0.434(11) 0.430(1) 0.3775

mq [GeV] 1.81(7) ∞ 1.4794

Non-relativistic potential (NRp) model
T.Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005) 054026

▶ String breaking is not observed 



Result; spin-spin ccbar potential 
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FIG. 3: Spin-spin charmonium potential calculated from the
BS wave function. The dashed, dotted and dash-dotted curve
corresponds to the fitting result for Yukawa, exponential,
Gausian type function, respectively. The all shaded bands
show the statistical fitting uncertainty calculated by the jack-
knife method. For comparison, the phenomenological poten-
tial employed in a NRp model [4] is also included as solid
curve.

TABLE III: Fitting function to spin-spin charmonium poten-
tial and resulting each parameters.

functional form � ⇥ ⇤2/ndf
Yukawa-type 0.321(45) 1.07(16) GeV 0.04
Exponential-type 0.78(10) GeV 1.95(14) GeV 0.11
Gaussian-type 0.258(14) GeV 0.840(54) GeV2 1.03

charmonium potential is also important to introduce the
hyperfine splitting for higher-mass charmonium states
with the non-zero angular momentum, such as small mass
di�erence between the spin averaged ⇧c state and hc

state. The point like interaction ⇥ ⇤(r) induced by one
gluon exchange according to the Fermi-Breit formula can-
not give the mass splitting to the non-zero angular mo-
mentum states whose wave function vanishes at the ori-
gin. In phenomenological potential model, actually non-
point like interaction induced by an O(v2) expansion is
employed [4]. Spin-spin charmonium from BS wave func-
tion satisfies the qualitative conditions requested from
the structure of the charmonium spectroscopy.

In contrast of the case of the spin-independent poten-
tial, the spin-spin potential obtained from lattice QCD is
slightly di�erent from the phenomenological one. As we
mentioned before, the phenomenological potential is ba-
sically determined by perturbative one-gluon exchange.
In this sense, the realistic spin-dependent potential from
first principles of QCD can provide new and valuable in-
formation to the NRp models. An improvement of the
spin-dependent potential would modify theoretical pre-
dictions about the higher-mass charmonium states.

To examine the appropriate functional form for the
spin-spin potential, we have tried three types of func-

tional forms:

VS(r) =

�
⇤

⇥

� exp(�⇥r)/r : Yukawa form
� exp(�⇥r) : Exponential form
� exp(�⇥r2) : Gaussian form

(8)

We then determine which functional form can give a
reasonable fit over the range of r/a from 2 to 10. All
fitting results are summarize in Table III. The long-
range screening observed in the spin-spin potential is
more easily accommodated by the Yukawa form or the
exponential-type form than the Gaussian form that is of-
ten employed in the NRp model. Although the Yukawa
form provides the smaller ⇧2/ndf than the exponential
form, it is mainly caused by the short-range behav-
ior of the spin-spin potential. As we mentioned previ-
ously, the short-range part in the potential su�ers much
from the discretization error, which can be monitored by
signs of the rotational breaking that appears seriously
at short distances. In this sense, both the Yukawa and
exponential-type forms equally well describe the data
points of the spin-spin charmonium potential obtained
from lattice QCD.

In this letter, we present both spin-independent and
-dependent part of the interquark potential at the charm
quark mass from the BS wave function in dynamical lat-
tice QCD simulations. The spin-independent charmo-
nium potential obtained from the BS wave function has
the good agreement with the one used in the phenomeno-
logical model. On the other hand, though the spin-spin
potential exhibits the short range repulsive interaction
which is phenomenologically required by the charmonium
spectroscopy, its shape is slightly di�erent from the phe-
nomenological one. Therefore spin-dependent potential
from lattice QCD can provide new information to the
NRp models.

We will next determine the every terms of charmo-
nium potential including the tensor and spin-orbit forces
by applying this BS amplitude method to P -wave and
D-wave charmonium state with respect to the structure
of the spinor such as S12⌅�(r). To obtained the detailed
information of the short range behavior of the charmo-
nium potential, a important step is taking the contin-
uum limit or improvement of the derivative operator to
remove the discretization error at short distances. Once
the every terms of the realistic charmonium potential is
determined, we can make a more precise prediction to
the spectroscopy of higher-mass charmonium states in
the same framework as quark potential model.
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and No. 23540284) and Scientific Research on Innovative
Areas (No. 21105504).

▶  Short range, but non-point like, repulsive interaction
▶  A difference appears in the spin-spin potential

 Fitting function α β χ/ d.o.f
Yukawa 0.297(12) 0.982(47) GeV 0.89

exponential 0.866(29) GeV 2.067(37) GeV 0.45
Gaussian 0.309(7) GeV 1.069(17) GeV2 12.40



Summary 

✦ We have derived both the spin-independent and -dependent part of the central qqbar 
interquark potential from the BS wave function in Quenched QCD simulation and 
2+1 flavor dynamical lattice QCD simulation with almost physical quark masses.

✓ spin-independent qqbar potential from BS wave function smoothly approaches the 
static qqbar potential from Wilson loop.

✓ The spin-independent charmonium potential obtained from the BS wave function 
resembles the one used in the NRp model. 

✓  Spin-spin charmonium potential from lattice QCD has new and valuable information 
to the NRp models. 

✦ Future perspective 

✓ Other spin-dependent potential: tensor and  LS force.

✓ Taking the Continuum limit.

✓ More precise prediction for higher charmonium state

✓ Three body force, csbar system, string breaking .......



Thank you for your attention!   
Grazie!


