The chiral representation of the πN scattering amplitude and the pion-nucleon σ -term

J. Martin Camalich

University of Sussex, UK

in collaboration with J.M. Alarcon and J.A. Oller

September 20, 2011

The nucleon sigma-terms

• The sigma-terms contain info on the scalar structure of the nucleon

$$\sigma_q = m_q \langle N | \bar{q}q | N \rangle$$
 at $t = 0$

We customarily define the pion-nucleon sigma term as

 $\sigma_{\pi N} = \sigma_u + \sigma_d$

- The $\sigma_{\pi N}$ is important throughout nuclear and particle physics
 - It gives understanding on the origin of the mass of the nucleon Alexandrou's and Bali's talks
 - It is important to understand χ-symmetry restoration in nuclear matter Weise's and Fiorilla's talks
 - It is essential to discriminate among SUSY models from DM searches Young's talk

- The $\sigma_{\pi N}$ can be determined **experimentally** from πN scattering expts.!!
- However there still exist embarrassing discrepancies
 - ► Karlsruhe-Helsinki Group R. Koch NPA448,707 (1986) $\sigma_{\pi N} \simeq 45$ MeV Gasser *et al* '91
 - ► George-Washington Group R.A. Arndt *et al* PRC 74,045205 (2006) $\sigma_{\pi N} \simeq 64(7)$ MeV Pavan *et al* '02
- GW Group includes high-precision data recorded in the last 20 yrs

Is the modern data-set really pinning down a large $\sigma_{\pi N}$? We have critically analyzed the experimental situation using **baryon chiral perturbation theory**

Experimental $\sigma_{\pi N}$: The Cheng-Dashen point

Low-energy theorem of the chiral nature of the strong interactions (PCAC)

$$\Sigma_{\pi N} \equiv f_{\pi}^2 \bar{D}^+ (2m_{\pi}^2, M_N^2) = \sigma_{\pi N} (2m_{\pi}^2) + \Delta_R$$

Cheng&Dashen '71

- $\bar{D}^+(t,s)$ is the (Born-subtracted) isoscalar πN scattering amplitude
- $\Delta_R \sim \mathcal{O}(p^4) \sim 1 \text{ MeV}$
- $\sigma_{\pi N}(2m_{\pi}^2) = \sigma_{\pi N} + \Delta_{\sigma} \simeq \sigma_{\pi N} + 15 \text{ MeV Gasser et al '91}$
- The Cheng-Dashen point lies in the unphysical region of the process $(t_{th} < 0, W_{th} = \sqrt{s_{th}} = M_N + m_{\pi})$
 - $\overline{D}^+(t,s)$ is constructed from a parametrization of the data in partial-waves
 - Extrapolation performed via dispersive relations

Problems of uncertainties in the traditional extraction of $\sigma_{\pi N}$

- (1) *t*-extrapolation dominated by the threshold to $2-\pi$'s
- (2) It is hard to ascertain how uncertainties propagate onto deep the unphysical region

Experimental $\sigma_{\pi N}$: The Cheng-Dashen point

Low-energy theorem of the chiral nature of the strong interactions (PCAC)

$$\Sigma_{\pi N} \equiv f_{\pi}^2 \bar{D}^+ (2m_{\pi}^2, M_N^2) = \sigma_{\pi N} (2m_{\pi}^2) + \Delta_R$$

Cheng&Dashen '71

- $\bar{D}^+(t,s)$ is the (Born-subtracted) isoscalar πN scattering amplitude
- $\Delta_R \sim \mathcal{O}(p^4) \sim 1 \text{ MeV}$
- $\sigma_{\pi N}(2m_{\pi}^2) = \sigma_{\pi N} + \Delta_{\sigma} \simeq \sigma_{\pi N} + 15$ MeV Gasser *et al* '91
- The Cheng-Dashen point lies in the unphysical region of the process $(t_{th} < 0, W_{th} = \sqrt{s_{th}} = M_N + m_{\pi})$
 - $\overline{D}^+(t,s)$ is constructed from a parametrization of the data in partial-waves
 - Extrapolation performed via dispersive relations

Problems of uncertainties in the traditional extraction of $\sigma_{\pi N}$

- (1) *t*-extrapolation dominated by the threshold to $2-\pi$'s
- (2) It is hard to ascertain how uncertainties propagate onto deep the unphysical region

An alternative experimental extraction of $\sigma_{\pi N}$

• Non-linear implementation of χ -symmetry in χ PT

At LO

$$\sigma_{\pi N} = -4m_{\pi}^2 c_1 + \mathcal{O}(p^3)$$

• An alternative χ -way of extracting $\sigma_{\pi N}!$

Advantages

(1) Obtained directly from scattering data (extrapolation not needed)

(2) Theoretical uncertainties computable on EFT grounds: χ PT

Our approach to $B\chi PT$: Renormalization

• We choose to work in the Lorentz covariant formalism Gasser *et al* '88

The power-counting problem is solved using...

Extended-on-mass-shell (EOMS) scheme

Choose a scheme in *d*-regularization such that you absorb the PC terms together with the UV divergences into the LECs Fuchs *et al* '01

• EOMS presents advantages over heavy-baryon (HB) and infrared (IR)

- In comparison with HB
 - * We incorporate the right analytic structure of nucleon propagators (Born-term)
 - *** HB** is not suitable to explore the subthreshold region Becher *et al* '99
- In comparison with IR
 - * Our representation does not include unphysical cuts ($\Delta_{GT}^{IR} \sim 20\%$)
- See Talk of J.M. Alarcon for details

Our approach to $B\chi PT$: Renormalization

• We choose to work in the Lorentz covariant formalism Gasser *et al* '88

The power-counting problem is solved using...

Extended-on-mass-shell (EOMS) scheme

Choose a scheme in *d*-regularization such that you absorb the PC terms together with the UV divergences into the LECs Fuchs *et al* '01

• EOMS presents advantages over heavy-baryon (HB) and infrared (IR)

- In comparison with HB
 - * We incorporate the right analytic structure of nucleon propagators (Born-term)
 - **HB** is not suitable to explore the subthreshold region Becher *et al* '99
- In comparison with IR
 - * Our representation does not include unphysical cuts ($\Delta_{GT}^{IR} \sim 20\%$)
- See Talk of J.M. Alarcon for details

Our approach to $B\chi PT$: The $\Delta(1232)$ resonance

- We include the Δ(1232) as an explicit degree of freedom
- Off-shell ambiguities: propagation of the unphysical d.o.f. contained in the Rarita-Schwinger representation of the spin-3/2 fields
 Solution: Use *consistent* formulation of chiral Lagrangians
 Pascalutsa *et al* '99 '00
- Power-Counting: New scale in the EFT δ = M_Δ M_N ~ 300 MeV Method: δ-counting assigns a hierarchy at low energies δ ~ O(p^{1/2}) Pascalutsa *et al* '03

• This counting should be valid only below the $\Delta(1232)$ resonance region!

Fitting: Insight

- We consider fits to hadronic phase shifts of the S- and P-waves
 - Karlsruhe-Helsinki (KH) Group
 KA85 solution R. Koch NPA448,707 (1986)
 - George-Washington University (GW) Group
 WI08 solution R.A. Arndt *et al* PRC 74,045205 (2006)
 - Evangelos Matsinos' (EM) Group
 E. Matsinos *et al* NPA 778, 95 (2006)
 - * Solution focused on the parametrization of data at very low-energies
 - * Early solution extrapolated to the Cheng-Dasheng point Olsson '00
- $\mathcal{O}(p^3)$ calculation in the δ -counting: Fit parameters
 - ▶ In the πN sector **9 LECs** ($\mathcal{O}(p)$: $g_A = 1.267$) $\mathcal{O}(p^2)$: $c_1, c_2, c_3, c_4; \mathcal{O}(p^3)$: $d_1 + d_2, d_3, d_5, d_{14} - d_{15}, d_{16}$
 - In the $\pi N \Delta$ sector **1 LEC**

 $\mathcal{O}(p^1)$: h_A (We could fix it with the $\Delta(1232)$ -width $h_A = 2.90(2)$)

We don't have △-loops at this order!!

Fitting: Insight

- We consider fits to hadronic phase shifts of the S- and P-waves
 - Karlsruhe-Helsinki (KH) Group
 KA85 solution R. Koch NPA448,707 (1986)
 - George-Washington University (GW) Group
 WI08 solution R.A. Arndt *et al* PRC 74,045205 (2006)
 - Evangelos Matsinos' (EM) Group
 E. Matsinos *et al* NPA 778, 95 (2006)
 - * Solution focused on the parametrization of data at very low-energies
 - * Early solution extrapolated to the Cheng-Dasheng point Olsson '00
- $\mathcal{O}(\rho^3)$ calculation in the δ -counting: Fit parameters
 - ▶ In the π*N* sector **9 LECs** ($\mathcal{O}(p)$: $g_A = 1.267$) $\mathcal{O}(p^2)$: c_1 , c_2 , c_3 , c_4 ; $\mathcal{O}(p^3)$: $d_1 + d_2$, d_3 , d_5 , $d_{14} - d_{15}$, d_{18}
 - In the $\pi N\Delta$ sector **1 LEC**

 $\mathcal{O}(p^1)$: h_A (We could fix it with the $\Delta(1232)$ -width $h_A = 2.90(2)$)

We don't have ∆-loops at this order!!

KH solution

• Bumps in the **KH**-solution raises the χ^2

GW solution

• Description is accurate up to just below/entering the resonance region

J. Martin Camalich @ Erice (Madrid)

Chiral πN scattering and $\sigma_{\pi N}$

EM solution

Description is very accurate at very low energies

J. Martin Camalich @ Erice (Madrid)

Chiral πN scattering and $\sigma_{\pi N}$

Determination of the $\mathcal{O}(p^2)$ LECs

	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄
KH	-0.80(6)	1.12(13)	-2.96(15)	2.00(7)
GW	-1.00(4)	1.01(4)	-3.04(2)	2.02(1)
EM	-1.00(1)	0.58(3)	-2.51(4)	1.77(2)

LECs values in GeV-1

- Discrepancies among PWs analyses...
 - ... in c_1 between **KH** and **GW**/**EM** \rightarrow Differences in $\sigma_{\pi N}$!
 - In in c_{2−3} between EM and KH/GW→ Problem of EM with a⁻₀₊
- Effect of the △ on LECs estimated by Resonance Saturation Hypothesis Meissner *et al* '96,Becher&Leutwyler'99

Determination of the $\mathcal{O}(p^2)$ LECs

	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	<i>C</i> ₄
KH	-0.80(6)	1.12(13)	-2.96(15)	2.00(7)
GW	-1.00(4)	1.01(4)	-3.04(2)	2.02(1)
EM	-1.00(1)	0.58(3)	-2.51(4)	1.77(2)

LECs values in GeV-1

- Discrepancies among PWs analyses...
 - ... in c_1 between **KH** and **GW/EM** \rightarrow Differences in $\sigma_{\pi N}$!
 - In c₂₋₃ between EM and KH/GW→ Problem of EM with a⁻₀₊
- Effect of the △ on LECs estimated by Resonance Saturation Hypothesis Meissner *et al* '96,Becher&Leutwyler'99

	C_1^{Δ}	C_2^{Δ}	c_3^{Δ}	C_4^{Δ}
GW	0.54	2.91	-3.83	1.77
RSH	-0.04	1.93.8	$-3.8\ldots-3$	1.42.0

$\sigma_{\pi N}$: χ -formula and uncertainties

• The expression of $\sigma_{\pi N}$ in EOMS-B χ PT up to $\mathcal{O}(p^3)$

$$\sigma_{\pi N} = -4\mathbf{c_1} m_{\pi}^2 - \frac{3g_A^2 m_{\pi}^3}{16\pi^2 f_{\pi}^2 M_N} \left(\frac{3M_N^2 - m_{\pi}^2}{\sqrt{4M_N^2 - m_{\pi}^2}} \arccos \frac{m_{\pi}}{2M_N} + m_{\pi} \log \frac{m_{\pi}}{M_N} \right)$$

With this Eq. and the fitted values for c₁ we predict σ_{πN}
 We have systematic and theoretical uncertainties

Systematic

- We study the dispersion of $\sigma_{\pi N}$ varying 1.14 $\leq W_{max} \leq$ 1.2 GeV
- 3 PW analyses: (hopefully) allows to *disentangle* systematics of the particular parametrization from the effect of the data-set used

• Theoretical

• Truncation of the χ -expansion \Rightarrow Can be calculated on a EFT basis!!

$\sigma_{\pi N}$: χ -formula and uncertainties

• The expression of $\sigma_{\pi N}$ in EOMS-B χ PT up to $\mathcal{O}(p^3)$

$$\sigma_{\pi N} = -4\mathbf{c_1} m_{\pi}^2 - \frac{3g_A^2 m_{\pi}^3}{16\pi^2 l_{\pi}^2 M_N} \left(\frac{3M_N^2 - m_{\pi}^2}{\sqrt{4M_N^2 - m_{\pi}^2}} \arccos \frac{m_{\pi}}{2M_N} + m_{\pi} \log \frac{m_{\pi}}{M_N} \right)$$

With this Eq. and the fitted values for *c*₁ we predict σ_{πN}
 We have systematic and theoretical uncertainties

• Systematic

- ▶ We study the dispersion of $\sigma_{\pi N}$ varying 1.14 $\leq W_{max} \leq$ 1.2 GeV
- 3 PW analyses: (hopefully) allows to *disentangle* systematics of the particular parametrization from the effect of the data-set used

Theoretical

For Truncation of the χ -expansion \Rightarrow Can be calculated on a EFT basis!!

$\sigma_{\pi N}$: χ -formula and uncertainties

• The expression of $\sigma_{\pi N}$ in EOMS-B χ PT up to $\mathcal{O}(p^3)$

$$\sigma_{\pi N} = -4\mathbf{c_1} m_{\pi}^2 - \frac{3g_A^2 m_{\pi}^3}{16\pi^2 t_{\pi}^2 M_N} \left(\frac{3M_N^2 - m_{\pi}^2}{\sqrt{4M_N^2 - m_{\pi}^2}} \arccos \frac{m_{\pi}}{2M_N} + m_{\pi} \log \frac{m_{\pi}}{M_N} \right)$$

With this Eq. and the fitted values for c₁ we predict σ_{πN}
 We have systematic and theoretical uncertainties

• Systematic

- ▶ We study the dispersion of $\sigma_{\pi N}$ varying 1.14 \leq $W_{max} \leq$ 1.2 GeV
- 3 PW analyses: (hopefully) allows to *disentangle* systematics of the particular parametrization from the effect of the data-set used

Theoretical

• Truncation of the χ -expansion \Rightarrow Can be calculated on a EFT basis!!

Theoretical uncertainty: $\mathcal{O}(p^{7/2})$

• Correction with a △-propagator

- This correction is to be compared with -19 MeV at $\mathcal{O}(p^3)$
 - Convergence pattern?
- We can't include this correction explicitly!
 Graphs at O(p^{7/2}) have to be included in the πN scattering amplitude

Our theoretical uncertainty will be $\delta \sigma_{\pi N}^{\text{theo}} = 6 \text{ MeV}$

Convergence of the chiral expansion: $\mathcal{O}(p^4)$

- Unitarity corrections in the *t*-channel could spoil the χ -expansion of $\sigma_{\pi N}$
 - The next-subleading ones come at $\mathcal{O}(p^4)$ with insertions of the $\mathcal{O}(p^2)$ LECs

- Taking our values for c_{1-4} we obtain $\delta \sigma_{\pi N}^{(4)} = -2 \dots -4$ MeV (extra contribution from $\mathcal{O}(p^4)$ LECs estimated to be $|\delta \sigma_{\pi N}^{(4,\text{LECs})}| \sim 1$ MeV)
- Decomposition of contributions (**GW**)

LO	NLO	N ² LO	N ³ LO
78	-19	6	3(2)

The χ -expansion for $\sigma_{\pi N}$ seems to be convergent!

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN **phenomenology**: **GW** is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (*NN*, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a⁺₀₊ (π-atoms)

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN phenomenology: GW is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (NN, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a⁺₀₊ (π-atoms)

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN phenomenology: GW is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (*NN*, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a⁺₀₊ (π-atoms)

	EOMS-B χ PT $\mathcal{O}(p^3)$	Cheng-Dashen (Dispersive)
KH	43(5)	≃45 [1]
GW	59(4)	65(7) [2]
EM	59(2)	56(9) [3]

- Our results, within systematics, agree with dispersive values
- We ratify the discrepancy between KH and GW/EM analyses
- EM and GW agree!: They have different systematics but both include new and high quality data
- πN phenomenology: GW is consistent with independent expt. info h_A (Δ -width), Δ_{GT} (NN, π -atoms), a_{0+}^- (π -atoms) and ...
- ...also with the isoscalar scattering length a_{0+}^+ (π -atoms)

- $\sigma_{\pi N}$ is strongly constrained by the value of a_{0+}^+
 - Gasser *et al.* '91: $\sigma_{\pi N} = \Sigma_d 3 \text{ MeV}$
 - Olsson '00

	$10^{\circ} a_{0+} [m_{\pi}]$
КН	-12(8)
GW -4(7)	
EM	2(3)
Expt.(<i>π</i>-atom) [1]	+7.6(3.1)

[1] Baru *et al*, PLB694,473 (2011); Baru *et al*, arXiv:1107.5509 [nucl-th]

J.Gasser et al, PLB253,252(1991)

Modern value of a_{0+}^+ points to a relatively large value of $\sigma_{\pi N}$

Value of $\sigma_{\pi N}$

- We take into account modern πN scattering data (GW and EM)
- We add in quadrature the systematic and theoretical errors

$$\sigma_{\pi N} =$$
 59(7) MeV

• If we were to include **KH** in the average we reduce $\sigma_{\pi N}$ by 2-3 MeV

If we use only the **KH** result we obtain $\sigma_{\pi N} = 43(8)$ MeV

Large strangeness in the nucleon

- $\sigma_s = m_s/(2\hat{m})(\sigma_{\pi N} \sigma_0)$ with $\sigma_0 = 36(7)$ MeV from χ PT
- ▶ Decuplet contributions largely cancel octet ones!! Jenkins&Manohar PLB281,336 (1992) (only 30 SPIRES citations) $\bar{\sigma}_{\pi N} = 50(9)(1)(3), \quad \bar{\sigma}_{\pi N} = 33(16)(4)(2)$ (Young's talk) PRD81,014503 (2010), JMC *et al* PRD82,054022 (2010) 054022
- Discrepancy with theory (LQCD)
 - LQCD result $\sigma_{\pi N} \lesssim$ 40 MeV (Bali's talk)
- Implications on DM searches
 - Expt. uncertainty coming from $\sigma_{\pi N}$ could by reduced by half (Young's talk)
- Studies in Nuclear matter
 - Accelerates χ-symmetry restoration in nuclear matter
 See Weise's and Fiorilla's talks

Large strangeness in the nucleon

- $\sigma_s = m_s/(2\hat{m})(\sigma_{\pi N} \sigma_0)$ with $\sigma_0 = 36(7)$ MeV from χ PT
- ► Decuplet contributions largely cancel octet ones!! Jenkins&Manohar PLB281,336 (1992) (only 30 SPIRES citations) $\bar{\sigma}_{\pi N} = 50(9)(1)(3), \quad \bar{\sigma}_{\pi N} = 33(16)(4)(2)$ (Young's talk) PRD81,014503 (2010), JMC *et al* PRD82,054022 (2010) 054022

Discrepancy with theory (LQCD)

- LQCD result $\sigma_{\pi N} \lesssim$ 40 MeV (Bali's talk)
- Implications on DM searches
 - Expt. uncertainty coming from $\sigma_{\pi N}$ could by reduced by half (Young's talk)
- Studies in Nuclear matter
 - Accelerates χ-symmetry restoration in nuclear matter See Weise's and Fiorilla's talks

Large strangeness in the nucleon

- $\sigma_s = m_s/(2\hat{m})(\sigma_{\pi N} \sigma_0)$ with $\sigma_0 = 36(7)$ MeV from χ PT
- ▶ Decuplet contributions largely cancel octet ones!! Jenkins&Manohar PLB281,336 (1992) (only 30 SPIRES citations) $\bar{\sigma}_{\pi N} = 50(9)(1)(3), \quad \bar{\sigma}_{\pi N} = 33(16)(4)(2)$ (Young's talk) PRD81,014503 (2010), JMC *et al* PRD82,054022 (2010) 054022

Discrepancy with theory (LQCD)

• LQCD result $\sigma_{\pi N} \lesssim$ 40 MeV (Bali's talk)

Implications on DM searches

• Expt. uncertainty coming from $\sigma_{\pi N}$ could by reduced by half (Young's talk)

Studies in Nuclear matter

 Accelerates χ-symmetry restoration in nuclear matter See Weise's and Fiorilla's talks

Large strangeness in the nucleon

- $\sigma_s = m_s/(2\hat{m})(\sigma_{\pi N} \sigma_0)$ with $\sigma_0 = 36(7)$ MeV from χ PT
- ► Decuplet contributions largely cancel octet ones!! Jenkins&Manohar PLB281,336 (1992) (only 30 SPIRES citations) $\bar{\sigma}_{\pi N} = 50(9)(1)(3), \quad \bar{\sigma}_{\pi N} = 33(16)(4)(2)$ (Young's talk) PRD81,014503 (2010), JMC *et al* PRD82,054022 (2010) 054022

Discrepancy with theory (LQCD)

• LQCD result $\sigma_{\pi N} \lesssim$ 40 MeV (Bali's talk)

Implications on DM searches

• Expt. uncertainty coming from $\sigma_{\pi N}$ could by reduced by half (Young's talk)

Studies in Nuclear matter

 Accelerates χ-symmetry restoration in nuclear matter See Weise's and Fiorilla's talks

Some phenomenology: πN and $N\Delta$ -axial couplings

	$\chi^{\rm 2}_{\rm d.o.f}$	h _A	$g_{\pi N}$	Δ_{GT} [%]
KH	0.75	3.02(4)	13.51(10)	4.9(8)
GW	0.23	2.87(4)	13.15(10)	2.1(8)
EM	0.11	2.99(2)	13.12(5)	1.9(4)

• In the comparison of h_A with the number from the Δ -width $h_A = 2.90(2)$

- GW gives right value whereas KH doesn't
- EM is an analysis of very low-energy data

• $g_{\pi N}$ and Goldberger-Treiman discrepancy

$$g_{\pi N} = \frac{g_A m}{f_\pi} (1 + \Delta_{GT})$$

- Our numbers agree with those given by the collaborations!
- KH analysis is not consistent with independent determinations...
 - * NN-interaction $\Delta_{GT}^{NN} \simeq 2\%$ De Swart et al '97
 - * Pionic atoms $\Delta_{GT}^{\pi H} \simeq 1.9(7)$ % Baru *et al* '11

Some phenomenology: πN and $N\Delta$ -axial couplings

	$\chi^{\rm 2}_{\rm d.o.f}$	h _A	$g_{\pi N}$	Δ_{GT} [%]
KH	0.75	3.02(4)	13.51(10)	4.9(8)
GW	0.23	2.87(4)	13.15(10)	2.1(8)
EM	0.11	2.99(2)	13.12(5)	1.9(4)

• In the comparison of h_A with the number from the Δ -width $h_A = 2.90(2)$

- GW gives right value whereas KH doesn't
- EM is an analysis of very low-energy data

• $g_{\pi N}$ and Goldberger-Treiman discrepancy

$$g_{\pi N} = \frac{g_A m}{f_\pi} (1 + \Delta_{GT})$$

- Our numbers agree with those given by the collaborations!
- KH analysis is not consistent with independent determinations...
 - * NN-interaction $\Delta_{GT}^{NN} \simeq 2\%$ De Swart et al '97
 - * Pionic atoms $\Delta_{GT}^{\pi H} \simeq 1.9(7)$ % Baru *et al* '11

Some phenomenology: πN and $N\Delta$ -axial couplings

	$\chi^{\rm 2}_{\rm d.o.f}$	h _A	$g_{\pi N}$	Δ_{GT} [%]
KH	0.75	3.02(4)	13.51(10)	4.9(8)
GW	0.23	2.87(4)	13.15(10)	2.1(8)
EM	0.11	2.99(2)	13.12(5)	1.9(4)

- In the comparison of h_A with the number from the Δ -width $h_A = 2.90(2)$
 - GW gives right value whereas KH doesn't
 - EM is an analysis of very low-energy data
- $g_{\pi N}$ and Goldberger-Treiman discrepancy

$$g_{\pi N} = rac{g_A m}{f_\pi} (1 + \Delta_{GT})$$

- Our numbers agree with those given by the collaborations!
- KH analysis is not consistent with independent determinations...
 - * NN-interaction $\Delta_{GT}^{NN} \simeq$ 2% De Swart *et al* '97
 - * Pionic atoms $\Delta_{GT}^{\pi H} \simeq 1.9(7)$ % Baru *et al* '11