NUCLEAR CHIRAL THERMODYNAMICS and PHASES of QCD

Prelude: QCD Phase Diagram (Concepts, Models, Problems)

Main Theme: Nuclear Chiral Thermodynamics

QCD interface with nuclear physics:

Chiral Effective Field Theory

- Nuclear Equation of State and QCD phase diagram
- Density and temperature dependence of the

Chiral (Quark) Condensate

Outlook:

New constraints from **Neutron Stars**

Part I: Prelude QCD PHASE DIAGRAM

Visions & Facts

QCD PHASE DIAGRAM

(theorists' vision)

MODELING the QCD PHASE DIAGRAM

Guiding principle:

QCD symmetries and symmetry breaking patterns

chiral and deconfinement crossover transitions (3 flavor PNJL model)

PHASE DIAGRAM

Non-local 3-flavor PNJL model calculation

PHASE DIAGRAM (contd.)

Part II: NUCLEAR CHIRAL THERMODYNAMICS

NUCLEAR MATTER and QCD PHASES

- momentum scale: Fermi momentum
- NN distance:
- energy per nucleon:
- compression modulus:

$$f k_F \simeq 1.4 \ fm^{-1} \sim 2m_\pi$$

 $f d_{NN} \simeq 1.8 \ fm \simeq 1.3 \ m_\pi^{-1}$
 $E/A \simeq -16 \ MeV$
 $K = (260 \pm 30) \ MeV \sim 2m_\pi$

Technische Universität München

CHIRAL EFFECTIVE FIELD THEORY

- Systematic framework at interface of QCD and Nuclear Physics
- Interacting systems of **PIONS** (light / fast) and **NUCLEONS** (heavy / slow): $\mathcal{L}_{eff} = \mathcal{L}_{\pi}(U, \partial U) + \mathcal{L}_{N}(\Psi_{N}, U, ...)$ $U(x) = exp[i\tau_a\pi_a(x)/f_\pi]$ Construction of Effective Lagrangian: Symmetries short distance + ... + dynamics: contact terms

Explicit $\Delta(1230)\,$ DEGREES of FREEDOM

Large spin-isospin polarizabilty of the Nucleon

Pionic Van der Waals - type intermediate range central potential

N. Kaiser, S. Gerstendörfer, W.W., NPA637 (1998) 395

Pieper, Pandharipande, Wiringa, Carlson (2001)

N. Kaiser, S. Fritsch, W.W., NPA750 (2005) 259

$$\mathbf{N} = -\frac{\pi}{\pi} \mathbf{V}_{\mathbf{c}}(\mathbf{r}) = -\frac{9 \, \mathbf{g}_{\mathbf{A}}^{2}}{32\pi^{2} \, \mathbf{f}_{\pi}^{2}} \, \beta_{\mathbf{\Delta}} \, \frac{\mathbf{e}^{-2\mathbf{m}_{\pi}\mathbf{r}}}{\mathbf{r}^{6}} \, \mathbf{P}(\mathbf{m}_{\pi}\mathbf{r}) \qquad \longleftrightarrow \qquad \mathbf{N} = -\frac{\pi}{\mathbf{N}} \mathbf{n} \mathbf{n}$$
J. Fujita, H. Miyazawa (1957)

Important pieces of the CHIRAL NUCLEON-NUCLEON INTERACTION

• CENTRAL ATTRACTION from TWO-PION EXCHANGE

Van der WAALS - like force: $V_{c}(r) \propto -\frac{\exp[-2m_{\pi}r]}{r^{6}}P(m_{\pi}r)$... at intermediate and long distance

CHIRAL DYNAMICS and the NUCLEAR MANY-BODY PROBLEM

N. Kaiser, S. Fritsch, W.W. (2002 - 2005)

Small scales:

$$k_{f F}\sim 2\,m_{\pi}\sim M_{f \Delta}-M_{f N}<<4\pi\,f_{\pi}$$

PIONS (and DELTA isobars) as explicit degrees of freedom

• IN-MEDIUM CHIRAL PERTURBATION THEORY

NUCLEAR MATTER

... satisfying Hugenholtz - van Hove and Luttinger theorems (!)

> Asymmetry energy $A(k_F^0) = 34 \, MeV$

Landau parameters

J.W. Holt, N. Kaiser, W.W. arXiv: 1106.5702 [nucl.-th], NPA (2011)

NUCLEAR THERMODYNAMICS

S. Fritsch, N. Kaiser, W.W.: Nucl. Phys. A 750 (2005) 259

PHASE DIAGRAM of NUCLEAR MATTER

PHASE DIAGRAM of NUCLEAR MATTER

Trajectory of **CRITICAL POINT** for **asymmetric matter**

as function of proton fraction Z/A

... determined almost entirely by

isospin dependent (one- and two-) pion exchange dynamics

CHIRAL CONDENSATE at finite BARYON DENSITY

- Chiral (quark) condensate $\langle \bar{q}q \rangle$: $m_{\pi}^2 f_{\pi}^2 = -2 m_q \langle \bar{q}q \rangle$ Order parameter of spontaneously broken chiral symmetry in QCD
- Hellmann Feynman theorem: $\langle \Psi | \bar{\mathbf{q}} \mathbf{q} | \Psi \rangle = \langle \Psi | \frac{\partial \mathcal{H}_{\mathbf{QCD}}}{\partial \mathbf{m}_{\mathbf{q}}} | \Psi \rangle = \frac{\partial \mathcal{E}(\mathbf{m}_{\mathbf{q}}; \rho)}{\partial \mathbf{m}_{\mathbf{q}}}$

CHIRAL CONDENSATE: DENSITY DEPENDENCE

Substantial **change** of **symmetry breaking scenario** between chiral limit $m_q=0$ and physical quark mass $m_q\sim 5\,MeV$

Nuclear Physics would be very different in the chiral limit !

 $ho \lesssim 2 \,
ho_{\mathbf{0}} \,, \quad \mathbf{T} \lesssim \mathbf{100} \, \mathbf{MeV}$

Technische Universität München

- Liquid-gas phase transition leaves its signature also in chiral condensate
- but: no tendency toward chiral first order transition in the range

 $\mu_{f B} \lesssim 1 \; {f GeV}$

Summary:PHASE DIAGRAMwithNUCLEARPHYSICSCONSTRAINTS

Major challenge: design QCD phase diagram in accordance with known realistic features from hadronic and nuclear physics

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5} Nature, Oct. 28, 2010 30 direct measurement of 20 10 neutron star mass from 0 increase in travel time -10 near companion -20 -30 J1614-2230 -40 most edge-on binary pulsar known (89.17°) + massive white dwarf Pulsar companion (0.5 M_{sun}) heaviest neutron star Companion with 1.97±0.04 M_{sun}

TWO-SOLAR-MASS NEUTRON STAR

... measured using Shapiro delay

P.B. Demorest et al., Nature 467 (2010) 1081

News from NEUTRON STARS

NEUTRON STAR MATTER Equation of State

Chiral Effective Field Theory at lower density

SUMMARY

Exploration of **QCD phase diagram**:

progress concerning basic symmetry breaking patterns

Lattice QCD (restricted to small quark chemical potentials)

Models (PNJL, PQM) (but: nuclear physics constraints missing)

Dyson-Schwinger QCD (-- same problem --)

Nuclear thermodynamics based on

In-medium Chiral Effective Field Theory

Technische Universität Münche

Fermi liquid \leftrightarrow interacting Fermi gas (1st order transition)

No indication of first order chiral transition in the range

 $ho \lesssim 2 \,
ho_{\mathbf{0}} \,, \,\, \mathbf{T} \lesssim \mathbf{100} \, \mathbf{MeV}$

Major challenge: design QCD phase diagram that is consistent with established hadronic and nuclear physics

New dense & cold matter constraints from neutron stars:

Mass - radius relation; observation of two-solar-mass n-star

"Non-exotic" equation of state works best !

The End

thanks to:

Nino Bratovic Jeremy Holt Salvatore Fiorilla Norbert Kaiser Thomas Hell Kouji Kashiwa

