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QCD  PHASE  DIAGRAM
Part I:  Prelude

Visions & Facts
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Z(3)

MODELING  the  QCD PHASE DIAGRAM  

Guiding principle: 
QCD symmetries and symmetry breaking patterns

Spontaneously broken 
   chiral symmetry      Centre 

SU(Nf )R × SU(Nf )L
            gauge groupSU(3)c

of

 T. Hell, S. Rössner, M. Cristoforetti, W. W. :  Phys. Rev.  D81 (2010) 074034

chiral and deconfinement  crossover transitions (3 flavor PNJL model)

non-local
 PNJL
  model
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Figure 4: Solid curves: calculated temperature dependence of the chiral condensate �q̄q� (left)
and of the Polyakov loop Φ (right) normalized to the transition temperature Tc = 205MeV as
obtained in the nonlocal PNJL model considered here. The dashed lines show the chiral conden-
sate for the pure fermionic case and the Polyakov loop for the pure gluonic case, respectively.
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Figure 5: The T0 dependence of the chiral condensate. The chiral transition tempera-
ture decreases from 205MeV to about 170MeV when reducing T0(Nf = 0) = 270MeV to
T0(Nf = 2) = 208MeV.

Finally, the pressure P = −Ω is computed after subtracting a divergent vacuum (T = 0)
term. The result is shown in Fig. 7. This figure displays, in addition, the separate contributions

20

loop
Polyakov

〈q̄q〉T
〈q̄q〉0

T. Hell, K. Kashiwa, W. W. :   Phys. Rev.  D83 (2011) 114008 
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Figure 4: Solid curves: calculated temperature dependence of the chiral condensate �q̄q� (left)
and of the Polyakov loop Φ (right) normalized to the transition temperature Tc = 205MeV as
obtained in the nonlocal PNJL model considered here. The dashed lines show the chiral conden-
sate for the pure fermionic case and the Polyakov loop for the pure gluonic case, respectively.
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Figure 5: The T0 dependence of the chiral condensate. The chiral transition tempera-
ture decreases from 205MeV to about 170MeV when reducing T0(Nf = 0) = 270MeV to
T0(Nf = 2) = 208MeV.

Finally, the pressure P = −Ω is computed after subtracting a divergent vacuum (T = 0)
term. The result is shown in Fig. 7. This figure displays, in addition, the separate contributions
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Figure 11: Phase diagram for the (2 + 1)-flavor nonlocal PNJL model at mean-field level.
The orange band shows the confinement-deconfinement crossover transition as described by
the Polyakov loop in the range 0.1 < Φ < 0.3. The dashed black line corresponds to the chi-
ral crossover (blue band: 0.3 < �ψ̄ψ�/�ψ̄ψ�0 < 0.7). The solid black line indicates the chiral
first-order transition. The temperature scale is set by Tc = 0.2GeV.

(i) Including wave-function-renormalization effects requires a careful re-assessment of chi-
ral low-energy theorems. Pseudoscalar meson masses and corresponding decay constants
at zero temperature have been re-derived. The results clearly show that the formal-
ism incorporates fundamental chiral relations such as the Gell-Mann–Oakes–Renner and
Goldberger-Treiman relations. In the three-flavor case, the inclusion of the ’t Hooft-
Kobayashi-Maskawa interaction leads to the correct mass splitting between the η and the
η� meson.

(ii) The PNJL thermodynamics has now been developed with systematic inclusion of the quark
quasiparticle renormalization factor Z(p). The temperature dependence of the chiral con-
densate and of the Polyakov loop has been calculated, indicating chiral and deconfinement
crossover transitions. We have compared our results with recent lattice-QCD computa-
tions. Finally, a quark chemical potential has been introduced that enables extensions to
the finite-density region of the QCD phase diagram.

(iii) The impact of the wave-function renormalization factor Z(p) compared to previous calcu-
lations [11, 12] setting Z(p) ≡ 1 is generally quite small over the whole relevant momentum
range. This can be understood considering the gap equations at zero temperature: since
Z(p) deviates significantly from unity only in the momentum range p � 1GeV, its ef-
fect does not contribute much to the relevant integrals because of its suppression by the
integration measure.

(iv) With inclusion of Z(p), the chiral and deconfinement crossover transitions tend to become
smoother compared to our previous investigations.

(v) The flavor dependence, T0(Nf), of the deconfinement temperature scale is an important
issue in lowering chiral-transition temperatures in accordance with the tendency recently
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Fig. 4. Phase diagram of our nonlocal PNJL model without the Z factor in T − theta plane. The dotted and

the solid line mean the crossover, first-order phase transition, respectively.
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Fig. 5. The T dependence of the σ̄ and Re Φ. The dotted and solid lines are results with T0 = 270 and 218
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Non-local 3-flavor PNJL model calculation

1st order transition line ?

quarkyonic ?
L. McLerran,  R. Pisarski

K. Kashiwa, T. Hell,  W. W. 
arXiv: 1106.5025 
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imaginary chemical potential
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     extend down to low temperatures  ?
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FIG. 6: Chiral and deconfinement phase diagram for a constant T0 = 208 MeV (left panel) and for T0(µ) with γ̂ = 0.85 (right
panel). The (grey) band corresponds to the width of dΦ/dT at 80% of its peak height. Close to the intersection point of
the chiral transition and the deconfinement transition at mid chemical potential a double peak structure in the temperature
derivative of the Polyakov-loop variables emerges. The (green) dashed line in this region follows the highest peak.
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FIG. 7: Pressure normalized to the Stefan-Boltzmann pressure for a constant T0 = 208 MeV (left panel) and with µ-corrections
(right panel) for three different chemical potentials. The CEP is located approximately at µ = 293 MeV. The insets show the
pressure at µ = 290 MeV for small temperatures.

A similar trend is seen in the entropy, Fig. 8, and
quark number density, Fig. 9, if the µ-corrections are
taken into account. The entropy density decreases for
small temperatures at µ = 290 MeV since the number
of active degrees of freedom decreases when approach-
ing the first-order transition from below. At the transi-
tion the entropy jumps. The bump around T ∼ 90 MeV
(left panel) is a remnant from the smooth chiral crossover
transition. This effect is completely washed out when the
µ-corrections are included (right panel). Similar to the
findings for the pressure these corrections become more
significant at larger chemical potential.

This also appears in the quark number density nq =
−∂Ω/∂µ which is plotted in Fig. 9. For comparison the
corresponding SB-limits (dashed lines) are also shown
in this figure. The quark density approaches the SB-
limit always from below. Without the µ-corrections the
Polyakov loop suppresses the quark densities for chemi-
cal potential larger than the intersection point of the chi-
ral and deconfinement transition in the phase diagram
Fig. 6. With the T0(µ) corrections both transitions coin-

cide over the whole phase diagram and as a consequence
the quark number density approaches much faster the
SB-limit (right panel of Fig. 9).

In Fig. 10 the scaled quark number density (left panel)
and the corresponding scaled quark number susceptibility
(right panel) for three different temperature slices around
the critical endpoint (TCEP, TCEP±5 MeV) as a function
of the quark chemical potential are collected. In this fig-
ure the µ-corrections in T0 are omitted while in Fig. 11
they are taken into account. Due to the chiral critical
endpoint which is a second-order transition the suscepti-
bility diverges with a certain power law [41]. There are
no strong modifications in the structure of the suscepti-
bility divergence if the back-reaction of the matter sector
is taken into account or not. As a consequence it seems
that the size of the critical region around the CEP is not
strongly modified by these fluctuations. The only differ-
ence is that including the µ-corrections the peak height of
the susceptibility is more pronounced towards the CEP.
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FIG. 4: The phase diagram for chiral symmetry break-
ing (χ) and deconfinement of quarks (Σ1) and anti-
quarks (Σ

−1).

its conjugate [7]. At larger chemical potential
all transitions come together again. The chiral
crossover line goes over into a critical point at ap-
proximately (TEP , µEP ) ≈ (95, 280)MeV, followed
by the coexistence region of a first order transi-
tion. Thus we find the comparatively large value
µEP /TEP ≈ 3. We have checked, that these val-
ues are not overly sensitive to the details of our
truncation: when changing the parameters in the
vertex ansatz within a reasonable range we observe
variations of (TEP , µEP ) of the order of ten per-
cent. Thus a firm conclusion of the present ap-
proach seems to be that µEP /TEP " 1: If there
is a critical endpoint, it happens at large chemical
potential. This statement agrees with the result
of corresponding calculations in the PQM model,
once quantum corrections have been taken into ac-
count [7]. Expectations from recent lattice calcu-
lations at Nf = 2+ 1 close to the continuum limit
also seem to point in this direction [8].
Certainly, at such large values of the chemical

potential, our truncation scheme may no longer
be reliable: baryon effects that are not implicitly
included in our truncation of the quark-gluon in-
teraction may play an important role here. Also
the formation of inhomogeneous chiral condensates
may be favored upon the homogeneous one studied
here. We believe that our work provides a suitable
basis for further investigations in these directions.
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Dyson - Schwinger  QCD Polyakov - Quark-Meson model

baryon densities

in the range
0.1 − 0.2 fm

−3

nuclear 
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Quarks are not the relevant active quasiparticles 
    at low temperatures and baryon chemical potentials       
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NUCLEAR MATTER   and  QCD PHASES

momentum scale:
Fermi momentum 

?

?

kF ! 1.4 fm
−1

∼ 2mπ

NN distance:  dNN ! 1.8 fm ! 1.3 m
−1

π

Scales in 
nuclear matter:

energy per nucleon:  E/A ! −16 MeV

compression modulus: K = (260 ± 30) MeV∼ 2mπ



PIONS  and  NUCLEI  
in the context of  LOW-ENERGY QCD

LOW-ENERGY / LOW-TEMPERATURE QCD:    

Effective  Field  Theory  of  weakly interacting 

Nambu-Goldstone Bosons (PIONS) 

representing QCD at (energy and momentum) scales

CONFINEMENT of quarks and gluons in hadrons

Spontaneously broken CHIRAL SYMMETRY

Q << 4π fπ ∼ 1GeV

m
2
π
f
2
π

= −mq 〈ψ̄ψ〉 + O(m2

q
)

  spontaneous 
symmetry breaking

      explicit 
symmetry breakingfπ = 92.4MeV

π
µ

ν

Axial current



Interacting systems of 
PIONS  (light / fast)  and  NUCLEONS  (heavy / slow):   

+ + . . .

π πN N

+

π π

Leff = Lπ(U, ∂U) + LN (ΨN , U, ...)

U(x) = exp[iτaπa(x)/fπ]

CHIRAL  EFFECTIVE  FIELD  THEORY

Construction of Effective Lagrangian: Symmetries
short

distance
dynamics:

contact terms

Systematic framework at interface of QCD and Nuclear Physics
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FIG. 1. The unpolarized total photoabsorption cross section on 1H obtained in this work is compared to previous results [9]
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∆
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Explicit DEGREES of FREEDOM∆(1230)

Large spin-isospin polarizabilty of the Nucleon

β∆ =
g2
A

f2
π
(M∆ − MN)

∼ 5 fm3

M∆ − MN " 2 mπ << 4π fπ

(small scale)

N N
π

π

∆

strong 3-body 
interaction

N

N

N

π

π

example: polarized Compton scattering

MAMI
(2001)

Pionic Van der Waals - type intermediate range central potential
N. Kaiser, S. Fritsch,  W. W. ,  NPA750 (2005) 259 N. Kaiser, S. Gerstendörfer,  W. W. ,  NPA637 (1998) 395

Vc(r) = −

9g2
A

32π2 f2
π

β∆

e−2mπr

r6
P(mπr)

J. Fujita, H. Miyazawa (1957) 

Pieper, Pandharipande, Wiringa, Carlson (2001) 

1 fm 10 fm 20km

1 fm 10 fm 20km

N

∆
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 Important  pieces  of  the 
 CHIRAL NUCLEON-NUCLEON INTERACTION

ISOVECTOR  
TENSOR  FORCE

s1 s2

VT

note:  no     meson 

 CENTRAL  ATTRACTION  from TWO-PION EXCHANGE
NN

NN

π

π

exchange

note:  no     boson  σ

ρ

 Van der WAALS - like force:

Vc(r) ∝ −

exp[−2mπr]

r6
P(mπr)

... at intermediate and long distance

N. Kaiser, S. Gerstendörfer, W.W.: Nucl. Phys. A 637 (1998) 395

∆(1232)



 

PIONS (and DELTA isobars) as explicit degrees of freedom

  pion exchange processes in presence of filled Fermi sea

π
π

π

+ +   ...  in-medium

   IN-MEDIUM CHIRAL PERTURBATION THEORY

N Nshort-distance dynamics: 

N,∆N N N N

Small 
scales:

2nd order TENSOR force  +  nucleon’s SPIN-ISOSPIN polarizability

kF ∼ 2mπ ∼ M∆ − MN << 4π fπ

contact interactions

N. Kaiser,  S. Fritsch,  W. W.  (2002 - 2005) 

CHIRAL DYNAMICS and the 
NUCLEAR MANY-BODY PROBLEM

(incl. resummations)



 

   Systematic expansion of  ENERGY DENSITY  
powers of Fermi momentum

E(kF)

 Loop expansion of (In-Medium) Chiral Perturbation Theory

[modulo functions fn(kF/mπ)

in
]

   IN-MEDIUM CHIRAL PERTURBATION THEORY

Nuclear thermodynamics: compute free energy density  

(3-loop order)
N. Kaiser,  S. Fritsch,  W. W. 

 (2002-2004)

in-medium
nucleon propagators
incl. Pauli blocking

  Finite nuclei energy density functional 

many quantitatively successful applications throughout the nuclear chart

(works for   kF << 4π fπ ∼ 1GeV)

e.g. P. Finelli et al.:  Nucl. Phys.  A 770 (2007) 1

J.W. Holt, N. Kaiser,  W. W. ;  arXiv:1107.5966 [nucl-th]



Inclusion of chiral πN∆-dynamics
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Nuclear matter saturation curve Ē(kf ):

essentially an analytical calculation

one single term linear in ρ adjusted

Ē0 = −16MeV

ρ0 = 0.157 fm−3

K = 300MeV (somewhat high)
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Hugenholtz-van-Hove theorem:

Tkin(kf ) + U(kf , kf ) = Ē(kf ) + kf
3

∂Ē
∂kf

severe problem in BHF calculations

N. Kaiser Chiral dynamics of nuclear matter
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  In-medium ChPT  
(π,N,∆)

basically: 
analytic calculation

Input parameters:
two contact terms

Output:

Binding & saturation
E0/A = −16MeV , ρ0 = 0.16 fm

−3 , K = 290MeV

Realistic (complex, momentum dependent) single-particle potential
... satisfying Hugenholtz - van Hove and Luttinger theorems (!)

Asymmetry energy A(k0
F) = 34MeV

Landau parameters

 3-loop 

J.W. Holt, N. Kaiser,  W. W.
arXiv: 1106.5702 [nucl.-th],   NPA (2011)
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NUCLEAR  THERMODYNAMICS

π

π

N N

N N

+

 Van der Waals  +  Pauli 

contact terms 

Liquid - Gas  Transition  at
Critical Temperature T  = 15 MeVc

c

S. Fritsch,  N. Kaiser,  W. W. :  Nucl. Phys.  A 750 (2005) 259

(empirical:   T  = 16 - 18 MeV)

baryon density

pressure

nuclear matter: equation of state

 NUCLEAR 
CHIRAL (PION) DYNAMICS

N,∆

BINDING & SATURATION:

3-loop 
in-medium 

ChEFT

+
3-body
forces
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G. Sauer, U. Mosel, Nucl. Phys. A 264
(1976) 221

Salvatore Fiorilla, Norbert Kaiser, Wolfram Weise Phases of nuclear matter

NUCLEAR  THERMODYNAMICS

Skyrme 
phenomenology

Multifragmentation 
and  fission  analysis

V.A. Karnaukhov et al. : 
Phys. Atom. Nucl. 71 (2008) 2067

G. Sauer, H. Chandra, U. Mosel
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Phase diagram of nuclear matter: summary

T − ρ diagram
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Trajectory of  CRITICAL POINT for  asymmetric matter

. . . determined almost entirely by 
isospin dependent (one- and two-) pion exchange dynamics
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(2011)

as function of proton fraction Z/A



CHIRAL  CONDENSATE  at finite  BARYON  DENSITY  

〈q̄q〉ρ
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= 1 −
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f2π

[
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3p2
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+ . . .
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(free) Fermi gas
of nucleons

nuclear interactions
(dependence on pion mass)
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∂mq

sigma term π
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  in-medium
chiral

effective
field theory

Hellmann - Feynman theorem:   〈Ψ|q̄q|Ψ〉 = 〈Ψ|
∂HQCD

∂mq
|Ψ〉 =

∂E(mq; ρ)

∂mq

Chiral (quark) condensate         :〈q̄q〉

Order parameter of spontaneously broken chiral symmetry in QCD
m2

π
f2
π

= −2mq〈q̄q〉
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CHIRAL  CONDENSATE:   DENSITY  DEPENDENCE

Substantial change of symmetry breaking scenario
between chiral limit mq = 0 and physical quark mass mq ∼ 5MeV

Nuclear Physics would be very different in the chiral limit !

constrained by 
realistic nuclear

equation of state

In-medium
Chiral

Effective
Field Theory

(Fermi gas)
N. Kaiser,  Ph. de Homont,  W. W.
Phys. Rev. C 77 (2008) 025204 

(NLO  3-loop) 

(σN = 45MeV)



CHIRAL  CONDENSATE:   
DENSITY  and  TEMPERATURE DEPENDENCE

constrained by 
realistic nuclear

equation of state

In-medium
Chiral

Effective
Field Theory

(NLO  3-loop) 

No indication of first order chiral phase transition for 

〈Ψ|q̄q|Ψ〉ρ,T =
∂F(mq; ρ,T)

∂mq

Free energy density 

F(mq; ρ,T)

ρ ! 2 ρ0 , T ! 100MeV

S. Fiorilla, N. Kaiser,  W. W.
arXiv:1104.2819 [nucl-th]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

ρ [fm−3]

〈q̄q〉ρ,T
〈q̄q〉0

symmetric
nuclear matter

N = Z

T = 0

20

50

T = 100 MeV



0.5

0.6

0.7

0.8

0.9

1

890 900 910 920 930 940 950

µ [MeV]

〈q̄q〉ρ,T
〈q̄q〉0

symmetric
nuclear matter

N = Z

T = 0

10

15

T = 20 MeV

CHIRAL  CONDENSATE:   
Dependence on 

TEMPERATURE  and  BARYON CHEMICAL POTENTIAL

Liquid-gas phase transition leaves its signature also in chiral condensate

but:   no tendency toward chiral first order transition in the range
µB ! 1 GeV

S. Fiorilla, 
N. Kaiser,  

W. W.
(2011)

baryon chemical potential
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Summary:     PHASE  DIAGRAM    with  
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Major challenge: design QCD phase diagram in accordance with
known realistic features from  hadronic and nuclear physics 

corridor of 
spontaneously 
broken chiral 

symmetry
extends at least up to:

T

Tc

0.5

1.0

?

from nuclear
 chiral thermodynamics :

S. Fiorilla, N. Kaiser,  W. W.
arXiv:1104.2819 [nucl-th]
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Outlook:

New Constraints
from

NEUTRON STARS



direct measurement of

neutron star mass from

increase in travel time

near companion

J1614-2230

most edge-on binary

pulsar known (89.17°)

+ massive white dwarf

companion (0.5 Msun)

heaviest neutron star

with 1.97±0.04 Msun

Nature, Oct. 28, 2010



common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryondensity of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.746 0.15)3 1015 g cm23, or ,10ns.
Evolutionary models resulting in companion masses.0.4M[ gen-

erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period.8ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exoticmatter; green, strange quarkmatter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.976 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases themaximum possiblemass for each EOS. For a 3.15-ms spin period,
this is a=2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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Fig. 9.— The upper panels give the probability distributions for the mass versus radius curves implied by
the data, and the solid (dotted) contour lines show the 2-σ (1-σ) contours implied by the data. The lower
panes summarize the 2-σ probability distributions for the 7 objects considered in the analysis. The left
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represents the mass-shedding limit for neutron stars rotating at 716 Hz.
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panel demonstrates the importance of 3N forces. The extension to higher densities using piecewise polytropes (as explained in
the text) is illustrated schematically in the left panel.

< 5% for densities ρ0/8 < ρ < ρ1 = 3.0 × 1014 g cm−3

(ρ1 corresponds to a neutron density ρ1,n = 1.1ρ0). We
obtain the following symmetry energy parameters and
proton fractions:

c1 [GeV−1] c3 [GeV−1] S2 [MeV] γ x(ρ0)

−0.7 −2.2 30.1 0.5 4.8%
−1.4 −4.8 34.4 0.6 7.2%

NN-only EM 26.5 0.4 3.3%
NN-only EGM 25.6 0.4 2.9%

The resulting pressure of neutron star matter is shown
in Fig. 1 for densities ρ < ρ1. The comparison of these
parameter-free calculations to a standard crust EOS [16]
shows good agreement to low densities ρ ! ρ0/10 within
the theoretical uncertainties. The band in Fig. 1 is domi-
nated by the uncertainty in c3, which may seem large, but
can be expected at leading 3N order [17]. In addition, the
right panel of Fig. 1 demonstrates the importance of 3N
forces. The pressure obtained from low-momentum NN
interactions only, based on the RG-evolved chiral N3LO
potentials of Entem and Machleidt (EM) [11] or of Epel-
baum et al. (EGM) [12], differ significantly from the
crust EOS at ρ0/2.
Neutron stars.– The structure of neutron stars (non-

rotating and without magnetic fields) is determined by
solving the Tolman-Oppenheimer-Volkov (TOV) equa-
tions. Because the central densities reach values higher
than ρ1, we need to extend the uncertainty band for
the pressure of neutron star matter beyond ρ1. To this
end, we introduce a transition density ρ12 that separates
two higher-density regions, and describe the pressure by
piecewise polytropes, P (ρ) = κ1ρΓ1 for ρ1 < ρ < ρ12, and
P (ρ) = κ2ρΓ2 for ρ > ρ12, where κ1,2 are determined by
continuity of the pressure. Ref. [18] has shown that such
a piecewise polytropic EOS can match a large set of neu-

tron star matter EOS taking 1.5 < Γ1,2 < 4.0 and transi-
tion densities ρ12 ≈ (2.0 . . . 3.5)ρ0. We therefore extend
the pressure of neutron star matter based on chiral EFT
using two general piecewise polytropes, as illustrated in
Fig. 1, with 1.5 < Γ1,2 < 4.5 and 1.5 < ρ12/ρ0 < 4.5.

We solve the TOV equations for the limits of the pres-
sure band below nuclear densities continued by the piece-
wise polytropes to higher densities. The range of Γ1,2

and ρ12 can be constrained further, first, by causality
that limits the speed of sound to lightspeed, and second,
by requiring the EOS to support a neutron star with at
least M = 1.65M" [19]. The resulting allowed range
of polytropes is shown by the light blue band at higher
density in Fig. 2. The comparison with a representa-
tive set of EOS used in the literature [15] demonstrates
that the pressure based on chiral EFT interactions (the
darker blue band) sets the scale for the allowed higher-
density extensions and is therefore extremely important.
It also significantly reduces the spread of the pressure at
nuclear densities from a factor 6 at ρ1 in current neutron
star modeling to a factor 1.5.

Results.– In Fig. 3 we show the neutron star M -R
curves obtained from the allowed EOS range. The blue
region corresponds to the blue band for the pressure in
Figs. 1 and 2. At the limits of this region, the pressure
of neutron star matter continues in form of the piece-
wise polytropes, and all curves end when causality is
violated. If this is reached before a maximum mass at
dM/dR = 0, one could continue the M -R curves by en-
forcing causality. This would lead to a somewhat larger
maximum mass, but would not affect the masses and
radii of neutron stars with lower central densities. We
observe from the transition density points ρ12 in Fig. 3
that the range of Γ1 dominates the uncertainty of the
general extension to high densities. Smaller values of Γ1
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Figure 6.3: PSR J1614-2230 and the observational constraints to the radii due to Steiner
et al. delimits the range for the physical EoS into the green area (for further explanation
see text). The horizontal dashed lines are the limits previously given for P2 according to
[19]. The APR EoS [20] is shown for comparison.
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SUMMARY

No indication of first order chiral transition in the range 

Nuclear thermodynamics based on   
                              In-medium  Chiral  Effective  Field  Theory

Major challenge:  design QCD phase diagram that is 
consistent with established hadronic and nuclear physics 

   “Non-exotic” equation of state works best !    

New dense & cold matter constraints from neutron stars:

Mass - radius relation;  observation of two-solar-mass n-star 

 Fermi liquid         interacting Fermi gas  (1st order transition)

Exploration of QCD phase diagram:
progress concerning basic symmetry breaking patterns

Lattice QCD (restricted to small quark chemical potentials)
Models (PNJL, PQM) (but:  nuclear physics constraints missing)
Dyson-Schwinger QCD  ( -- same problem -- )

ρ ! 2 ρ0 , T ! 100MeV
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