Factorization breaking in diffractive jet production

Michael Klasen

Institute for Theoretical Physics, University of Münster

21 September 2012

Work done in collaboration with G. Kramer, University of Hamburg

 Motivation
 Factorization
 Hadroproduction
 Photoproduction
 Conclusion

 ●
 0000000000
 000000000
 000000000
 000
 000

Properties of the "new particle with a mass of 125 GeV"?

Hadroproduction

Photoproduction 00000000 Conclusion 000

Huge uncertainty from rescattering probability

Reference	Process	Survival factor		Norm	$\sigma_{\rm Higgs}$ (fb)		Notes
		T^2	S^2	Norm.	Teva.	LHC	10003
Cudell,	excl	no	no	$\sigma_{ m tot}$	30	300	Overshoots CDF dijets
Hernandez [21]	incl				200	1200	by 1000.
Levin [20]	excl incl	yes (no DL)	yes	$\sigma_{ m tot}$	20 70	-	Overshoots CDF dijets by 300.
Khoze, Martin, Ryskin [16]	excl incl C.inel	yes	yes	pdf pdf	$0.2 \\ 1 \\ \sim 0.03$	3 40 50	Uses skewed gluons. CDF dijets OK.
Cox, Forshaw, Heinemann [5]	C.inel	$T\simeq 1$	norm	CDF dijet	0.02	6	No LO, only NLO, QCD i.e., no Fig.2a, only 2c.
Boonekamp, De Roeck, Peschanski, Royon [7]	C.inel	$T\simeq 1$	norm	CDF dijet	2.7	320	No LO, only NLO, QCD. Assume $S^2_{\rm CDF}=S^2_{\rm LHC}$.
Enberg, Ingelman, Kissavos, Timneanu [19]	incl C.inel	yes	yes	$F_2^{\text{Diff.}}$	< 0.01	0.2	No coherence.

Khoze, Martin, Ryskin, EPJC 26 (2002) 229

р

Factorization •0000000000 Hadroproduction

Photoproduction 00000000 Conclusion 000

QCD factorization for inclusive DIS

Kinematic variables:

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$x = \frac{Q^{2}}{2m_{p}(E_{e} - E'_{e})}$$

$$y = \frac{q \cdot p}{k \cdot p} = \frac{\sum_{h}(E_{h} - p_{z,h})}{2E_{e}}$$

Inclusive structure function:

$$F_2(x, Q^2) = \sum_{a=q,g} C_{2a} \otimes f_{a/p} + \mathcal{O}\left(\frac{1}{Q^2}\right)$$

Motivation 00

Factorization 0000000000 Hadroproduction

Photoproduction

Conclusion 000

Experimental test of factorization

De Roeck, Thorne, PPNP 66 (2011) 727

→ PDFs determined in *ep* at HERA also describe $p\bar{p}$ Tevatron data → Hard scale Q set by jet p_T ; PDFs needed for p and \bar{p}

Factorization

Hadroproduction

Photoproduction 00000000 Conclusion 000

QCD factorization for inclusive DIS on photons

Kinematic variables:

$$egin{array}{rcl} P^2 &=& -p^2\simeq 0 \ x_\gamma &=& rac{Q^2}{(q+p)^2+Q^2+P^2} \end{array}$$

Inclusive structure function:

$$F_2^{\gamma}(x_{\gamma}, Q^2, P^2) = \sum_{a=\gamma,q,g} C_{2a} \otimes f_{a/\gamma} + \dots$$

Direct + resolved components (VMD)

Nisius, Phys. Rep. 322 (2000) 165

Factorization

Hadroproduction

Photoproduction

Conclusion 000

Experimental test of factorization for photons

Cornet, Jankowski, Krawczyk, PRD 70 (2004) 093004

Klasen, Kramer, EPJC 71 (2011) 1774

 \rightarrow PDFs determined in $e\gamma$ at LEP also describe γp HERA data \rightarrow Hard scale Q set by jet p_T ; PDFs needed for γ and p

Motivation 00

Factorization

Hadroproduction

Photoproduction 000000000 Conclusion 000

QCD factorization for diffractive DIS

Final state separated by rapidity gap:

- X = contains hard jets
- Y = proton or low-mass excitation

Additional variables:

$$t = (p - p_Y)^2$$

 $x_{IP} = \frac{q(p - p_Y)}{qp} (= \xi)$

Diffractive structure function:

$$F_2^D(x, Q^2; x_{IP}, t) = \sum_a C_{2a} \otimes f^D_{a/p}$$

8 / 36

Factorization

Hadroproduction 0000000000 Photoproduction 00000000 Conclusion 000

Proof of QCD factorization for diffractive DIS (1)

Leading regions:

- A = remnant jets $\parallel p$ and p'
- H = hard with momenta \sim Q
- S = soft with momenta $\ll Q$
- $J_i = hard jets$

Light-cone coordinates:

$$q^{\mu} = (q^+, q^-, {f q}_{\mathcal{T}}) \;, \; q^{\pm} = rac{q^0 \pm q^3}{\sqrt{2}}$$

Breit frame:

1

$$q^{\mu}=\left(-rac{Q}{\sqrt{2}},rac{Q}{\sqrt{2}},oldsymbol{0}
ight)\;,\;q^{0}=0$$

 Conclusion 000

Proof of QCD factorization for diffractive DIS (2)

Soft gluon attachments (only FS):

$$J^{\mu} = \frac{1}{(I-k)^2 - m^2} \Gamma^{\mu}$$

= $\frac{1}{-2I^-k^+} \Gamma^- \hat{I}^{\mu} + \mathcal{O}(Q^0)$
= $k^+ J^- \frac{\hat{I}^{\mu}}{k^+} + \mathcal{O}(Q^0)$

Jet momentum:

$$I^{\mu} = \left(0, rac{Q}{\sqrt{2}}, oldsymbol{0}
ight) + \mathcal{O}(Q^0)$$

Ward identity, proof as in e^+e^- . For small k^+ , can deform to $k^+ - i\varepsilon$

Factorization

Hadroproduction

Photoproduction

Conclusion 000

Proof of QCD factorization for diffractive DIS (3)

Proton momenta:

$$p^{(\prime)\mu}=\left(rac{(1-x_{IP})}{x}rac{Q}{\sqrt{2}},0,oldsymbol{0}
ight)+\mathcal{O}(Q^0)$$

Soft gluon attachments (IS and FS): $A^{\mu} = r^{-}A^{+}\frac{\hat{p}^{\mu}}{r^{-}} + \mathcal{O}(Q^{0})$

Can not deform contour for small r^- .

Route *r* back from jet with small r^+ component, until one hits large A^+ . So the poles at $r^- = 0$ must cancel.

Factorization

Hadroproduction

Photoproduction

Conclusion 000

Regge factorization

Additional variable:

$$z_{IP} = \frac{x}{x_{IP}} (= \beta)$$

Regge factorization (cf. WWA):

$$\begin{split} f^{D}_{a/p}(x,Q^{2};x_{IP},t) &= \\ f_{IP/p}(x_{IP},t) \, f_{a/IP}(z_{IP},Q^{2}) \\ &+ n_{IR} \, f_{IR/p}(x_{IP},t) \, f_{a/IR}(z_{IP},Q^{2}) \end{split}$$

Leading/subleading trajectories:

$$\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP} t$$

Ingelman, Schlein, PLB 152 (1985) 256

Factorization 0000000000 Hadroproduction 0000000000 Photoproduction

Conclusion 000

Regge factorization at HERA

No theoretical proof, but well supported by experimental data.

Parameter	H1 2006 fit A	H1 2006 fit B	H1 2007 jets
B _{IP}	5.5 GeV ⁻²	idem	idem
$\alpha_{IP}(0)$	1.118	1.111	1.104
α'_{IP}	0.06	idem	idem
n _{IR}	$1.7 imes10^{-3}$	$1.4 imes10^{-3}$	$1.3 imes10^{-3}$
B _{IR}	1.6 GeV ⁻²	idem	idem
$lpha_{IR}(0)$	0.50	idem	idem
α'_{IR}	0.3	idem	idem

At small $x_{IP} < 0.03$ (0.025 for $\gamma p \rightarrow \text{jets}$) and $|t| < 1 \text{ GeV}^2$:

- Reggeon n_{IR} small, but needed for a good fit
- Contributes 30 % at large $x_{IP} \simeq 0.03$
- Pion PDFs (not very sensitive)

H1 Coll., EPJC 48 (2006) 715 H1 Coll., JHEP 0710 (2007) 042 Notivation

Factorization

Hadroproduction

Photoproduction

Conclusion 000

Experimental test of factorization for pomerons

H1 Coll., JHEP 0710 (2007) 042

 \rightarrow Pomeron dominated by gluon; quarks (u = d = s) much smaller \rightarrow Inclusive DIS data not enough; must also include DIS dijet data

Factorization

Hadroproduction •000000000 Photoproduction 00000000 Conclusion 000

Diffractive dijet production at the Tevatron (1)

Tevatron Run IC (1995-96):

- $par{p}$ collisions at $\sqrt{s}=1800~{
m GeV}$

32.629 non-diffractive (ND) events:

- 2 jets with cone size R = 0.7- $E_T^{1,2} > 7$ GeV, $|\eta^{1,2}| < 4.2$ - $x_{\bar{p}} = \frac{1}{\sqrt{s}} \sum_i E_T^i e^{-\eta^i}$

30.410 single-diffractive (SD) events:

- \bar{p}' triggered in Roman pot (57 m) - $\xi (= x_{IP}) \in [0.035; 0.095]$ - $|t| < 1 \text{ GeV}^2$

CDF Coll., PRL 84 (2000) 5043

Factorization

Hadroproduction 000000000 Photoproduction

Conclusion 000

Diffractive dijet production at the Tevatron (2)

Cross section ratio:

$$R(x, Q^{2}, \xi, t) = \frac{N_{JJ}^{\text{SD}}(x, Q^{2}, \xi, t)}{N_{JJ}^{\text{ND}}(x, Q^{2})} \simeq \frac{F_{JJ}^{\text{SD}}(x, Q^{2}, \xi, t)}{F_{JJ}^{\text{ND}}(x, Q^{2})}$$

(Single-) diffractive structure function:

$$ilde{F}_{JJ}^{\mathsf{D}}\left(eta=rac{x}{\xi}
ight) \;\;=\;\; \mathsf{R}(x,Q^2,\xi,t) imes \mathsf{F}_{JJ}^{\mathsf{ND}}(x,Q^2)$$

Non-diffractive structure function:

$$F_{JJ}^{ND}(x,Q^2) = x \left[f_{g/p}(x,Q^2) + \frac{4}{9} \sum_q f_{q/p}(x,Q^2) \right]$$

with GRV 98 LO PDFs.

Factorization

Hadroproduction

Photoproduction

Conclusion 000

Diffractive dijet production at the Tevatron (3)

Comparison with F_2^D from H1:

- Smaller by 0.06 (0.05) for fit 2 (3) - QCD factorization is broken!

Shape disagrees as well:

- For $\beta <$ 0.5, $\tilde{\textit{F}}_{JJ}^{D} \sim 1/\beta$ (solid line)

Corrections and uncertainties:

- UE of 1.16 (0.54) GeV for ND (SD) - 3- and 4-jet contributions (band) - Systematic error on norm.: $\pm 25\%$

CDF Coll., PRL 84 (2000) 5043

Hadroproduction

Photoproduction

Conclusion 000

Diffractive dijet production at the Tevatron (4)

Experimental analysis:

- Cone algorithm, ambiguous \rightarrow Need $R_{ ext{sep}} = 1.3 imes R$
- Equal cuts on $E_T^{1,2} > 7 \text{ GeV}
 ightarrow ext{Need} \ E_T^2 > 6.5 \text{ GeV}$
- Remedied in PRL 88 (2002) 151802 with $\overline{E_{T}} > 10~\text{GeV}$

Theoretical interpretation:

- No unfolding of Wilson coefficients (simple division)
- Only color factors taken into account in F_{JJ}^{ND}
- No evolution effects, assume $Q^2=75~{
 m GeV}^2\simeq \langle E_T^2
 angle$
- Outdated LO parameterization for proton PDFs
- H1 DPDFs obtained at smaller $x_{IP} < 0.03$, but Reggeon is small
- H1 DPDFs include dissociation, must be divided by 1.23
- Must also take into account $F_2^{D,c}(x, Q^2, x_{IP}, t) = 2 x e_c^2 f_{c/p}^D$

Klasen, Kramer, PRD 80 (2009) 074006

 Factorization
 Hadroproduction
 Photoproduction

 0000000000
 000000000
 000000000

Conclusion 000

Diffractive dijet production in NLO QCD

 \rightarrow Qualitatively similar results with correlations and new DPDFs \rightarrow Impact of NLO corrections visible, strong β -dependence at NLO

Klasen, Kramer, PRD 80 (2009) 074006

Factorization 00000000000 Hadroproduction

Photoproduction 00000000 Conclusion 000

Non-factorizable multipomeron exchanges

Two-channel eikonal model:

Diffractive eigenstates:

$$|\phi_s
angle = rac{1}{\sqrt{2}}(|p
angle + |N^*
angle) \ , \ |\phi_{v}
angle = rac{1}{\sqrt{2}}(|p
angle - |N^*
angle)$$

Absorptive cross sections \sim size of components:

- Gluons and sea quarks (s) = large
- Valence quarks (v) = small

Factorization

Hadroproduction

Photoproduction 000000000 Conclusion 000

Survival probabilities in LO QCD

Kaidalov, Khoze, Martin, Ryskin, EPJC 21 (2001) 521

Factorization 00000000000 Hadroproduction

Photoproduction 000000000 Conclusion 000

Survival probabilities in NLO QCD

 \rightarrow Valence quarks in proton dominate at small $\beta,$ less suppression \rightarrow No significant \sqrt{s} dependence

Klasen, Kramer, PRD 80 (2009) 074006

Factorization

Hadroproduction

Photoproduction

Conclusion 000

Center-of-mass energy dependence (1)

Low-x partons important at large \sqrt{s} , but little dependence on \sqrt{s} observed Opacity / optical density:

$$\Omega_i ~\sim~ {(g^{IP}_{
hop})^2 (s/s_0)^{lpha_{IP}(0)-1}\over 4\pi B}$$

H1 2006 fits A,B and H1 2007 jets: - $\alpha_{IP}(0) = 1.104...1.118$

CDF Coll., PRL 88 (2002) 151802

→ Similar rapidity gap: $\Delta \eta = 3...4.9$; smaller $\xi \in [0.0003; 0.002]$ → Survival probability: 0.12 ± 0.05 at LO, 0.08 ± 0.8 at NLO

CMS Coll., arXiv:1209.1805

 Factorization
 Hadroproduction
 Photoproduction

 0000000000
 000000000
 000000000

Conclusion 000

Diffractive dijet photoproduction (1)

Direct photons

Resolved photons

Factorization 00000000000 Hadroproduction

Photoproduction

Conclusion 000

Diffractive dijet photoproduction (2)

The proof of factorization would appear to apply also to direct photo-production of jets, etc., because the initiating particle of the hard scattering is a lepton. However the proof does not apply to resolved photoproduction processes, since these are in effect hadron-hadron processes. The lack of an absolutely unambiguous separation between direct and resolved photoproduction will presumably limit the accuracy of the application of the factorization formula to direct diffractive photoproduction.

Factorization

Hadroproduction 0000000000 Photoproduction

Conclusion 000

Non-factorizable multipomeron exchanges

Generalized vector meson dominance: - $I^{PC} = 1^{--}$: $\gamma \rightarrow \rho, \omega, ...$

Fitted parameters at W = 200 GeV:

- $\sigma_{tot}(\rho p) = 34 \text{ mb}$ - Pomeron slope: $B = 11.3 \text{ GeV}^{-2}$
- $\gamma=$ 0.6 for large ρ excitation prob.

Survival probability:

- Direct photons: $|S|^2 = 1$
- Resolved photons: $|S|^2 = 0.34$

Kaidalov, Khoze, Martin, Ryskin, PLB 567 (2003) 61

Diffractive dijet photoproduction in NLO QCD (1)

 \rightarrow No factorization breaking at LO, but clearly at NLO \rightarrow Constant suppression factor R=0.34 for resolved component

Klasen, Kramer, EPJC 38 (2004) 39

Diffractive dijet photoproduction in NLO QCD (2)

→ Data also described by global suppression of R = 0.50→ Suppression depends on E_T . Note: Direct component is harder

Klasen, Kramer, EPJC 70 (2010) 91

Hadroproduction

Photoproduction

Conclusion 000

Diffractive dijet photoproduction in NLO QCD (3)

Comparison of H1 low- E_T , high- E_T and ZEUS analyses:

Suppression	H1 low- E_T^{jet}	H1 high- E_T^{jet}	ZEUS	ZEUS ren.	
	EPJC 70 (2010) 15	H1-prelim-08-012	EPJC 55 (2008) 177	id.	
global	0.50	0.62	0.71	0.56 ± 0.05	
res	0.40	0.38	0.53	0.42 ± 0.04	
res+dir-IS	0.37	0.30	0.45	0.36 ± 0.03	
res, fit A	0.32	0.16	0.27	0.21 ± 0.01	

- \rightarrow ZEUS data renormalized for proton dissociation
- \rightarrow Good agreement with H1 high- E_T analysis
- \rightarrow Direct initial-state influences only scale dependence
- \rightarrow Suppression factor depends (slightly) on DPDFs

Klasen, Kramer, EPJC 70 (2010) 91

Factorization 000000000000 Hadroproduction

Photoproduction

Conclusion 000

Diffractive vs. inclusive dijet photoproduction

$$R = f_{g/IP} \otimes f_{IP/p}/f_{g/p}$$
:

$$R = \sigma_{diff} / \sigma_{incl}$$
:

 \rightarrow Full kinematics important, but similar K-factors

Diffractive dijet production at low Q^2 in NLO QCD

 \rightarrow Important transition region from photoproduction to DIS

- ightarrow Resummation of higher orders into PDFs needed at low Q^2
- \rightarrow Similar suppression factor applies to this resolved contribution

Dijet photoproduction with leading neutron in NLO QCD

→ Dominated by π exchange → can be used to determine π PDFs → Flux: Light-cone form factor with R = 0.55 GeV⁻¹ from DIS

ightarrow Pion PDFs dominated by q, not g ightarrow different supression factor

Hadroproduction

Photoproduction 00000000 Conclusion •00

Conclusion

Diffractive events:

- Large fraction of DIS events at HERA (10-15%)
- Clean events at Tevatron/LHC, perhaps even for Higgs studies

Theoretical description:

- QCD factorization proven in DIS
- Regge factorization well supported by experimental data
- DPDFs best constrained by also including jets in DIS

Factorization breaking:

- Initial and final state rescatterings \rightarrow no contour deformation
- Multipomeron exchanges \rightarrow two-channel eikonal model
- pp: NLO qualitatively similar to LO, β -dependent
- $\gamma \textit{p}:$ Direct/resolved related at NLO, resolved supp. \sim constant

Motivation	Factorization	Hadroproduction	Photoproduction	Conclusion
00	0000000000	000000000	00000000	000

Ultraperipheral heavy-ion collisions at the LHC

 \rightarrow Heavy ions produce strong el.magn. fields \rightarrow photoproduction \rightarrow Central events with diffractive (J/ Ψ) + photon (DY) cont.s

Baltz, MK et al., PR 458 (2008) 1

Factorization

Hadroproduction 0000000000 Photoproduction 00000000 Conclusion

Leading twist theory of nuclear shadowing

Geometric interpretation (Glauber, 1955):

- Nucleon in front absorbs part of incoming flux
- Casts shadow on the nucleon behind
- Include anti-shadowing to conserve momentum sum rule

Relation to diffraction (Gribov, 1969):

- At large \sqrt{s} , intermediate state of double scattering is diffractive
- Therefore leading twist, needs only HERA data

Frankfurt, Guzey, Strikman, PR 512 (2012) 255 36 / 36