Applications of Holography to Strongly Coupled Plasmas

University of Heidelberg

International Max planes Research school

For precision tests of fundamental symmetries

in collaboration with Carlo Ewerz

34th International School of Nuclear Physics Erice/Sicily

Holography, Gauge/Gravity duals, AdS/ CFT correspondence, ...

...many realisations, but one concept.

34thInternational School of Nuclear Physics

Holography, Gauge/Gravity duals, AdS/ CFT correspondence, ...

Heavy ion collisions and AdS/CFT				
	PHYSICAL REVIEW D 8	4 12 2009 (2011)		
	Model of a Fermi liquid using gauge-gravity duality Subir Sachdev			
	Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA (Received 4 August 2011; published 21 September 2011)			
	We use gauge-gravity duality to model the crossover from a conformal critical point to a confining Fermi liquid, driven by a change in fermion density. The short-distance conformal physics is represented by an anti-de Sitter geometry, which terminates into a confining state along the emergent spatial direction. The Luttinger relation, relating the area enclosed by the Fermi surfaces to the fermion density, is shown to follow from Gauss's law for the bulk electric field. We argue that all low energy modes are consistent with Landau's Fermi liquid theory. An explicit solution is obtained for the Fermi liquid for the case of hard- wall boundary conditions in the infrared.			
1	DOI: 10.1103/PhysRevD.84.066009	PACS numbers: 11.25.Tq, 71.10.Hf		

...many realisations, but one concept.

34thInternational School of Nuclear Physics

Holography, Gauge/Gravity duals, AdS/ CFT correspondence, ...

Heavy ion collisions and AdS/CFT					
	PHYSICAL REVIEW D 84 (2011) Model of a Fermi liquid usi gauge-gravity duality				
	Departme	PHYSICAL	W D 83, 066004 (2011)		
	We use gauge-gr Fermi liquid, driven by an anti-de Sitter The Luttinger relation follow from Gauss's Landau's Fermi liqu wall boundary cond DOI: 10.1103/PhysRe	Vortex flow for Kar Faculty of Engineering, Shibaura In Tak Department of Physics, Kwansei (Received 7 December We investigate energy dissipation associated superconductor model constructed from the application of constant magnetic and electric fit find the vortex-flow resistance near the second The characteristic feature of the nonequilibrium Ginzburg-Landau (TDGL) theory. We evaluate of the second-order phase transition. At zero m are also evaluated just below the critical temp DOI: 10.1103/PhysRevD.83.066004	engo M engo M stitute of Technology, Saitama, 330-8570, Japan ashi Okamura [†] Gakuin University, Sanda, 669-1337, Japan er 2010; published 2 March 2011) With the motion of the scalar condensate in a holographic charged scalar field coupled to the Maxwell field. Upon telds, we analytically construct the vortex-flow solution and order phase transition where the scalar condensate begins. In state agrees with the one predicted by the time-dependent to the kinetic coefficient in the TDGL equation along the line in agnetic field, the other coefficients in the TDGL equation bereature. PACS numbers: 11.25.Tq, 74.20z, 74.25q		

...many realisations, but one concept.

34thInternational School of Nuclear Physics

Holographic Principle

The physics in a (d+1)-dimensional volume can be described by a theory living on the d-dimensional boundary.

 e.g.: duality between gauge theories in d-dimension and gravity theories (string theories) in higher dimensions.

34thInternational School of Nuclear Physics

34thInternational School of Nuclear Physics

Why is that duality useful?

$$g_{\rm YM}^2 = 2\pi g_{\rm s}, \quad R^4 = 4\pi g_{\rm s} N_{\rm c} l_{\rm s}^4, \quad \lambda = g_{\rm YM}^2 N_{\rm c}$$

 $\lambda \text{ fixed}, N_{\rm c} \longrightarrow \infty : \qquad g_{\rm s} \sim \lambda/N_{\rm c}$
 $\lambda \longrightarrow \infty : \qquad R^4 \sim \lambda l_{\rm s}^4$

strongly coupled QFT \longleftrightarrow weakly coupled gravity

Erice, September 21, 2012

34thInternational School of Nuclear Physics

QCD $\longleftrightarrow \mathcal{N} = 4$ super Yang-Mills

- $\mathcal{N} = 4$ SYM very different from QCD:
 - Maximally supersymmetric
 - Conformal theory, coupling is constant
 - No confinement, no chiral symmetry breaking
 - $N_c \to \infty$ for duality

QCD $\longleftrightarrow \mathcal{N} = 4$ super Yang-Mills

- $\mathcal{N} = 4$ SYM very different from QCD
 - Maximally supersymmetric
 - Conformal theory, coupling is constant
 - No confinement, no chiral symmetry breaking
 - $N_c \to \infty$ for duality
- At finite T, differences are smaller:
 - Above $2T_c$ QCD almost conformal
 - No confinement in QCD above T_c
 - Finite T breaks supersymmetry

34thInternational School of Nuclear Physics

Basic Properties of AdS

• AdS_5 metric:

$$ds^2 = \frac{R^2}{z^2} \left(-dt^2 + d\vec{x}^2 + dz^2 \right)$$
 with R being the AdS curvature

Solution to 5D Einstein-Hilbert action:

$$S = \frac{1}{16\pi G} \int d^5 x \sqrt{-g} (\mathcal{R} - 2\Lambda)$$

34thInternational School of Nuclear Physics

Basic Properties of AdS

• AdS_5 black hole metric:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right) \text{ with } h = 1 - \frac{z^{4}}{z_{h}^{4}} \text{ and } T = \frac{1}{\pi z_{h}}$$

Solves the same e. o. m.:

Metric models at finite temperature

• AdS_5 BH metric at finite temperature:

$$ds^{2} = \frac{R^{2}}{z^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right) \text{ with } h = 1 - \frac{z^{4}}{z_{h}^{4}} \text{ and } T = \frac{1}{\pi z_{h}}$$

• SW_T model:

Kajantie, Tahkokallio, Yee

$$ds^{2} = \frac{R^{2}}{z^{2}} e^{cz^{2}} \left(-h dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{h} \right)$$

2-parameter model:

DeWolfe, Rosen; Gubser

$$ds^{2} = e^{2A(\Phi)} \left(-h(\Phi) dt^{2} + d\vec{x}^{2} \right) + \frac{e^{2B(\Phi)}}{h(\Phi)} d\Phi^{2}$$

is a solution to equations of motion.

34thInternational School of Nuclear Physics

Screening distance in hot moving plasmas

34thInternational School of Nuclear Physics

Screening distance in hot moving plasmas

Nambu-Goto action:

$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{-\det g_{\alpha\beta}}$$

with
$$g_{\alpha\beta} = G_{\mu\nu}\partial_{\alpha}x^{\mu}\partial_{\beta}x^{\nu}$$

34thInternational School of Nuclear Physics

Screening distance in hot moving plasmas

- Static $q\bar{q}$ pair in a hot moving plasma "wind" blowing in x_2 -direction
- velocity $v = \tanh \eta$
- \blacksquare orientation angle θ

Nambu-Goto action:

$$S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{-\det g_{\alpha\beta}}$$

with
$$g_{\alpha\beta} = G_{\mu\nu}\partial_{\alpha}x^{\mu}\partial_{\beta}x^{\nu}$$

34thInternational School of Nuclear Physics

Configuration of the strings

 \blacksquare l_{\max} defines the screening distance.

• The screening distance is a lower bound in $\mathcal{N} = 4$ SYM for all theories under investigation.

34thInternational School of Nuclear Physics

Configuration of the strings

The string configuration coming closer to the horizon is unstable.

34thInternational School of Nuclear Physics

$Q\bar{Q}$ -free energy: results

Unstable configurations are weaker bounded.

34thInternational School of Nuclear Physics

Running Coupling from Free Energy

Running Coupling from Free Energy

34thInternational School of Nuclear Physics

Conclusions

- Although being a conjecture the AdS/CFT correspondence as a realisation of the *Holographic principle* is a very powerful tool for qualitative and quantitative analysis, e.g.:
 - Robustness and Universality of the screening distance.
 - Running coupling of $q\bar{q}$ pairs in good agreement with lattice QCD data.
- Many other more sophisticated models (e.g. including D3/D7 branes) available that nicely reproduce many QCD features and includes finite chemical potential.

Thank you for your attention!

Rotating Quark at Zero Temperature

 $T = 0, \ \omega = 0.3, \ 0.7, \ R_0 = 1$

Athanasiou, Rajagopal, Chesler, Liu, Nickel, 2010

What can we learn from a rotating quark in a hot moving plasma?

34thInternational School of Nuclear Physics

What can we learn from a rotating quark in a hot moving plasma?

Rotating Quark in Deformed Metric Models

- Vacuum radiation is independent of the deformation ϕ .
- Universal scaling in the crossover regime.

34thInternational School of Nuclear Physics

Conclusions

- Although being a conjecture the AdS/CFT correspondence as a realisation of the *Holographic principle* is a very powerful tool for qualitative and quantitative analysis, e.g.:
 - Robustness and Universality of the screening distance.
 - Running coupling of $q\bar{q}$ pairs in good agreement with lattice QCD data.
 - *Robustness* of the energy loss of rotating quarks in deformed models.
- Many other more sophisticated models (e.g. including D3/D7 branes) available that nicely reproduce many QCD features and includes finite chemical potential.

Thank you for your attention!

Rotating Quark in Deformed Metric Models

• Universal scaling in the crossover regime.

34thInternational School of Nuclear Physics

Metric models at finite temperature

Deformed 2-parameter metric:

DeWolfe, Rosen; Gubser

5D-Einstein-Hilbert-Dilaton action:

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left(R - \frac{1}{2} (\partial_\mu \Phi)^2 - V(\Phi) \right)$$

General ansatz for metric

$$ds^{2} = e^{2A(\Phi)}(-h(\Phi)dt^{2} + d\vec{x}^{2}) + \frac{e^{2B(\Phi)}}{h(\Phi)}d\Phi^{2}$$

• with parameters:
$$\frac{c}{T^2}$$
, $\alpha \equiv \frac{c}{\phi}$

Temperature

$$T = \frac{e^{A(\Phi_h) - B(\Phi_h)} |h'(\Phi_h)|}{4\pi}$$

34thInternational School of Nuclear Physics

Metric models at finite temperature

Deformed 2-parameter metric:

DeWolfe, Rosen; Gubser

$$A(\Phi) = \frac{1}{2} \ln\left(\sqrt{\frac{3}{2}}c\frac{R^2}{\alpha}\right) - \frac{1}{2}\ln\Phi - \frac{\alpha}{\sqrt{6}}\Phi$$
$$B(\Phi) = \ln\left(\frac{R}{2}\right) + \frac{1+2\alpha^2}{2\alpha^2}\ln\left(1+\alpha\sqrt{\frac{2}{3}}\Phi\right) - \ln\Phi - \frac{1}{\alpha\sqrt{6}}\Phi$$

2-parameter model solves supergravity equations of motion for suitable dilaton potential V

34thInternational School of Nuclear Physics

Screening distance in physical units

34thInternational School of Nuclear Physics

$Q\bar{Q}$ -free energy: computation

• General formulation of the $q\bar{q}$ free energy:

$$E(L,\eta,\theta)\mathcal{T} = S(L,\eta,\theta) - S_0$$

• The string action reads:

$$S = \sqrt{\lambda} \mathcal{T} T \int_{y_c}^{\infty} \frac{d\sigma}{y'} \sqrt{\left(y^4 - \cosh^2 \eta\right) \left(1 + \frac{{y'}^2}{y^4 - 1}\right)} \quad \Rightarrow \quad \frac{S}{\sqrt{\lambda} \mathcal{T} T} = \int_{y_c}^{\infty} dy \frac{y^4 - \cosh^2 \eta}{\sqrt{(y^4 - y_c)(y^4 - 1)}}$$

Compute drag solution for a moving heavy quark:

$$S_0 = \sqrt{\lambda} \mathcal{T} T \int_{1}^{\infty} dy$$

Final equation for the free energy

$$E\left(q(L),\eta,\frac{\pi}{2}\right)\mathcal{T} = \sqrt{\lambda}\mathcal{T}T\int_{y_c}^{\infty} \left[\frac{y^4 - \cosh^2\eta}{\sqrt{(y^4 - y_c)(y^4 - 1)}} - 1\right]dy - \sqrt{\lambda}\mathcal{T}T(y_c - 1)$$

34thInternational School of Nuclear Physics

Different orientation angles

 $34^{\rm th}$ International School of Nuclear Physics

Horizon function

 $34^{\rm th}$ International School of Nuclear Physics

Erice, September 21, 2012

Heavy baryon screening

• Consider baryon configuration with N_c quarks arranged on a circle

Introduce density of quarks along the circle

34thInternational School of Nuclear Physics

Baryon string configuration

• We can find a stable and unstable solution. The stable one is plotted.

34thInternational School of Nuclear Physics

Screening distance bound for baryons

34thInternational School of Nuclear Physics

Erice, September 21, 2012

Free energy for baryons

 $34^{\rm th}$ International School of Nuclear Physics

Rotating Quark at Finite Temperature

 Radial function of the rotating quark. The dots denote the point where the string reaches the local speed of light in the bulk.

34thInternational School of Nuclear Physics