Search for the QCD Critical Point

Gary D. Westfall *Michigan State University* For the STAR Collaboration

Gary Westfall for STAR - Erice, 2012

Search for Possible QCD Critical Point

Trajectories at low μ_B Theories suggest a cross-over transition

Gary Westfall for STAR – Erice, 2012

The RHIC Beam Energy Scan

√s _{NN} (GeV)	Min. Bias Events (10 ⁶)
7.7	4.3
11.5	11.7
19.6	35.8
27	70.4
39	130.4
62.4	67.3
200	500

• Goals:

- Search for signatures of a possible phase transition from hadronic matter to quark gluon matter
- Search for signatures of a possible QCD critical point
- Strategy
 - Vary incident energy to span range in $T-\mu_{\rm B}$
 - Look for non-monotonic behavior of observables

Gary Westfall for STAR – Erice, 2012

Observables

- Particle ratio fluctuations
 - K/π
 - Strangeness fluctuations
 - p/π
 - Baryon fluctuations
 - K/p
 - Strangeness/baryon correlations
- Net particle higher moments
 - Net charge
 - Net charge fluctuations
 - Net kaons
 - Net strangeness fluctuations
 - Net protons
 - Net baryon fluctuations

Observable - Fluctuations

• Our observable is $v_{dyn,K\pi}$, which measures how correlated the event-by-event distributions are

$$\nu_{\mathrm{dyn},K\pi} = \frac{\left\langle N_{K} \left(N_{K} - 1 \right) \right\rangle}{\left\langle N_{K} \right\rangle^{2}} + \frac{\left\langle N_{\pi} \left(N_{\pi} - 1 \right) \right\rangle}{\left\langle N_{\pi} \right\rangle^{2}} - 2 \frac{\left\langle N_{K} N_{\pi} \right\rangle}{\left\langle N_{K} \right\rangle \left\langle N_{\pi} \right\rangle}$$

- $V_{dyn,K\pi}$, is zero for uncorrelated emission (Poisson)
- NA49 uses $\sigma_{\!\scriptscriptstyle \mathrm{dyn}}$

$$\sigma_{\rm dyn} = \operatorname{sgn}(\sigma_{\rm data}^2 - \sigma_{\rm mixed}^2) \sqrt{|\sigma_{\rm data}^2 - \sigma_{\rm mixed}^2|}$$

With enough statistics and large denominator

$$v_{\rm dyn} \approx {\rm sgn}(\sigma_{\rm dyn})\sigma_{\rm dyn}^2$$

Gary Westfall for STAR - Erice, 2012

Observable – Net Particle Moments

- Fluctuations of conserved quantities such as net charge, net strangeness, and net baryon number may be related to the chiral phase transition or critical phenomena
 - Net charge

$$N_{q,\text{net}} = N_{+} - N_{-}$$

Net strangeness

$$N_{\rm s,net} = N_{K^+} - N_{K^-}$$

Net baryon number

$$N_{\rm b,net} = N_p - N_{\overline{p}}$$

 Higher moments of the net particle distributions are predicted to be sensitive to high powers of the susceptibility

Cumulants

- To describe the higher moments of net particle distributions, we employ cumulants
- Cumulants can be expressed in terms of the central moments
- The central moments are defined by $\delta x = x \langle x \rangle$

x is the number in an event

 $\langle x \rangle$ is the average over an ensemple of events

second moment:
$$\left\langle \left\langle x^2 \right\rangle \right\rangle = \left\langle \left(\delta x \right)^2 \right\rangle$$

third moment:
$$\left\langle \left\langle x^{3} \right\rangle \right\rangle = \left\langle \left(\delta x \right)^{3} \right\rangle$$

fourth moment:
$$\langle \langle x^4 \rangle \rangle = \langle (\delta x)^4 \rangle$$

Gary Westfall for STAR – Erice, 2012

Cumulants

• The first four cumulants are $C_1 = \langle (\delta x) \rangle$ $C_2 = \langle (\delta x)^2 \rangle$

$$C_{3} = \left\langle \left(\delta x\right)^{3} \right\rangle \quad C_{4} = \left\langle \left(\delta x\right)^{4} \right\rangle - 3\left\langle \left(\delta x\right)^{2} \right\rangle^{2}$$

We can then define

Variance: $\sigma^2 = C_2$ Standard deviation: $\sigma = \sqrt{C_2}$ Skewness: $S = C_3 / C_2^{3/2}$ Kurtosis: $\kappa = C_4 / C_2^2$

$$S\sigma = C_3 / C_2 \quad \kappa \sigma^2 = C_4 / C_2$$

- Near the critical point, the cumulants will diverge with large powers of the correlation length (ξ)
- Higher moments scale with higher powers of the correlation length

Cumulants

• The susceptibilities χ and correlation lengths ξ scale as

- Various theories predict large enhancements in C_4/C_2 for net charge, net strangeness, and net baryon number
 - Karsch et al., PLB 695, 136 (2011). arXiv: 1203.0784
 - Cheng et al., PRD 79, 074505 (2009)
 - Hatta et al., PRL 91, 102003 (2003), Hatta et al. PRD 67, 014028 (2003)
 - Gavai, Gupta. PLB, 696, 459 (2011)
 - Stephanov PRL 102, 032301 (2009)

Expectations for Net Particle Moments

- We can define two expectations for net particle moments
 - Poisson distribution
 - We assume that the positive particle multiplicity and the negative particle multiplicity distributions are described by Poisson distributions characterized by μ^+ and μ^-
 - Negative binomial/binomial distribution
 - We assume that the positive particle multiplicity and the negative particle multiplicity distributions are described by negative binomial/binomial distributions characterized by (μ^+ , σ^{2+}) and (μ^- , σ^{2-})

Difference of Two Negative Binomials/Binomials

- The positive particle and negative particle multiplicity distributions are negative binomials or binomial distributions, depending on μ/σ^2
- The positive and negative multiplicity distributions can be characterized by their cimmulants:
 - $C_{1,+}, C_{2,+}, C_{3,+}, C_{4,+}$ $C_{1,-}, C_{2,-}, C_{3,-}, C_{4,-}$
- The cumulants of the differences of the two cumulants are

$$C_1 = C_{1,+} - C_{1,-}$$
 $C_3 = C_{3,+} - C_{3,-}$

 $C_2 = C_{2,+} + C_{2,-} \quad C_4 = C_{4,+} + C_{4,-}$

Ole E. Barndorff-Nielsen, David G. Pollard and Neil Shephard DISCRETE-VALUED LEVY PROCESSES AND LOW LATENCY FINANCIAL ECONOMETRICS Oxford, ISSN 1471-0498

The products of the moments are then

$$C_3 / C_2 = S\sigma \quad C_4 / C_2 = \kappa\sigma^2$$

Gary Westfall for STAR

Difference of Two Poisson Distributions

- μ_{+} = mean of the positive particle distribution
- μ_{-} = mean of the negative particle distribution
- The cumulants of a Poisson distribution are given by $C_{1,+} = C_{2,+} = C_{3,+} = C_{4,+} = \mu_+$

$$C_{1,-} = C_{2,-} = C_{3,-} = C_{4,-} = \mu_{-}$$

- So the cumulants of the difference are $C_1 = C_{1,+} - C_{1,-} = \mu_+ - \mu_- \quad C_3 = C_{3,+} - C_{3,-} = \mu_+ - \mu_ C_2 = C_{2,+} + C_{2,-} = \mu_+ + \mu_- \quad C_4 = C_{4,+} + C_{4,-} = \mu_+ + \mu_-$
- The moment ratios are $C_3 / C_2 = (\mu_+ - \mu_-) / (\mu_+ + \mu_-)$ $C_4 / C_2 = (\mu_+ + \mu_-) / (\mu_+ + \mu_-) = 1$

Gary Westfall for STAR

K/π Fluctuations – Summed Signs

Gary Westfall for STAR - Erice, 2012

K/π Fluctuations – Separated Signs

p/π Fluctuations – Summed Signs

^{• (}*p*+*p*)/(π⁺+π⁻)

- Central events
 (0 5%)
- STAR results show a smooth decrease with decreasing incident energy
- There is good agreement between STAR and NA49 results
- The UrQMD model agrees with the data at low energy, but changes sign at high energy

p/π Fluctuations – Same Signs

p/π Fluctuations – Opposite Signs

K/p Fluctuations – Summed Signs

K/p Fluctuations – Same Sign

K/p Fluctuations – Opposite Sign

K⁺/p⁺ Fluctuations – Compare NA49

Net Charge Moments Energy Dependence

Net Kaon Moments Energy Dependence

Net Proton Moments Energy Dependence

Conclusions – Particle Ratio Fluctuations

- Particle ratio fluctuations in central collisions
 - K/π
 - Summed sign fluctuations are positive
 - Separate sign fluctuations are negative
 - Disagreement with NA49 at lowest energy
 - p/π
 - Summed sign fluctuations are negative
 - Separate sign fluctuations are negative
 - Agreement with NA49
 - K/p
 - Summed sign fluctuations are negative
 - Separate sign fluctuations are negative
 - Disagreement with NA49 at lowest energy

No non-monotonic behavior observed with incident energy

Conclusions – Net Particle Higher Moments

- Net particle higher moments in central collisions
 - Net charge
 - $S\sigma = C_3/C_2$ consistent with negative binomial/binomial expectation, above Poisson expectation, and below HRG
 - $\kappa \sigma^2 = C_4/C_2$ between Poisson and negative binomial/binomial expectations and consistent with HRG
 - Net kaons
 - $S\sigma = C_3/C_2$ consistent with both the Poisson and negative binomial/ binomial expectations
 - $\kappa \sigma^2 = C_4/C_2$ consistent with both Poisson and negative binomial/ binomial expectations
 - Net protons
 - $S\sigma = C_3/C_2$ consistent with both the Poisson and negative binomial/ binomial expectations
 - $\kappa \sigma^2 = C_4/C_2$ below Poisson expectation but more consistent with the negative binomial/binomial expectation
 - No non-monotonic behavior observed with incident energy