New Results from RHIC

Barbara Jacak

Stony Brook University

Erice School on Nuclear Physics Sept. 17, 2012

Create the hottest matter on earth

How does it work? What's actually inside? q&g or pure fields or? Use RHIC & LHC together to figure out via T dependence

> NB: Nu Xu will lecture on beam energy scan to study phase diagraom

RHIC news vs. time in the collision

Initial State Effects	<u>QGP</u> properties	Expansion & <u>flow</u>	<u>Hadron gas +</u> final state effects
γ _{dir}	$\pi^0 R_{AA}$	N _{quark} scaling	e⁺e ⁻
jet & $\pi^0 R_{dA}$	γ _{dir} – h	U+U, Cu+Au	$J/\psi v_2$
J/ψ, ψ' R_{dA}	Heavy q R _A	$\mathbf{v}_1, \mathbf{v}_3, $ etc.	• 2
	J/ ψ, Υ R _{ΑΑ}		

study plasma with radiated & "probe" particles

- as a function of transverse momentum
 90° is where the action is (max T, ρ)
 p_L between the two beams: midrapidity
- p_T < 1.5 GeV/c "thermal" particles radiated from bulk medium "internal" plasma probes
- p_T > 3 GeV/c
 large E_{tot} (high p_T or M)
 set scale other than T(plasma)
 autogenerated "external" probe
 describe by perturbative QCD
- control probe: photons EM, not strong interaction produced in Au+Au by QCD Compton scattering

INITIAL STATE EFFECTS

Formation of these probes is affected by the fact the struck partons are in nucleons bound in a nucleus

No modification of direct photons in initial hard scattering and PDF compared to p+p at mid-rapidity

Do not expect such a strong centrality dependence to the nuclear PDFs

• Under intense investigation!

1.2		
1		
0.8		7
0.6	π 0	PHENIX Preliminary
0.4 0.2	η iets	d+Au, s _{NN} =200 GeV

Do the π^0 and jets agree?

Scale π⁰ by 1/0.7
 i.e. 1/<Z_{leading}>

- Agreement is excellent
- R_{cp} shows strong
 centrality dependence

Might the presence of a jet with p_T>10 GeV/c modify definition of a "peripheral d+Au collision"?

• Observe slight suppression of J/ψ

nPDFs affect formation cross section

Also collision with nucleons, comoving stuff can break up bound state into c and cbar

• ψ' a big surprise! $\psi' \mid J/\psi$ ratio should be unity when time in nucleus < formation time. QGP probes (the goal)

Direct photons Au+Au

• not significantly suppressed

Single hadron suppression

R_{AA} at LHC is similar
Spectral shape is not!

<u>Similar R_{AA} ≠ same energy loss</u>

arXiv:1208.2254

 Higher energy loss at LHC Larger difference than apparent from RAA alone
 Lower energy loss in lower energy RHIC collisions NB: look in kinematic region of jet fragments! 13

Where does the lost energy go?

• Thermalize in the plasma? Additional soft hadrons from induced gluon radiation? Plasma excitations?

Jet fragmentation function: count partners per trigger $z_T = p_{Ta}/p_{Tt} \sim z$ for γ trigger $\xi = \ln(1/z_T)$

Modification factor like R_{AA} : (1/N: $dN/d\xi$)

$$I_{AA} \equiv \frac{\left(1/N_{trig} dN/d\xi\right)_{AA}}{\left(1/N_{trig} dN/d\xi\right)_{pp}}$$

14

Find extra particles at low z

What happens to more massive probes?

• Diffusion of heavy quarks traversing QGP $M_c \sim 1.3 \text{ GeV}/c^2$

 Prediction: less energy loss than light quarks large quark mass reduces phase space for radiated gluons

 Reconstruct D or measure via semi-leptonic decays of mesons containing charm or bottom quarks
 x / e±

Open Charm Hadrons

Model curves: M. He, et al. arXiv: 1204.4442, P. B. Gossiaux et al, arXiv: 1207.5445

• Year 2010 + 2011 Charm cross section follows N_{bin} scaling \rightarrow improved precision \mathbf{R}_{AA} suppressed at $p_T > 3 \text{ GeV/c.}$ Hump structure in D⁰ \mathbf{R}_{AA} in low \mathbf{p}_{T} – similar in theoretical calculations Charm diffusion in sQGP Hadronization with flowing light quarks

What about b quarks?

What does b fate tell us about interactions in sQGP?
 M_b ~ 4.2 GeV/c²

 Add silicon detector arrays around beam pipe to both PHENIX and STAR; ALICE already has one

Tag displaced vertex to separate c,b Reconstruct D & B mesons

First direct c/b decomposition with new VTX detector

• New direct measurement of bottom fraction agrees with FONLL

 R_{AA} for $c \rightarrow e$

Using fit with FONLL shape as reference

R_{AA} for c \rightarrow e and π^0

Charm is less suppressed than light quarks

c→e vs. b→e

• Bottom appears more heavily suppressed!

Trends, including HF e

R_{AA} for c \rightarrow e consistent with R_{AA} for HF electrons

Is there a relevant color screening length?

- Plasma: interactions among charges of multiple particles spreads charge into characteristic (Debye) length, λ_D particles inside Debye sphere screen each other
- Strongly coupled = few (~1-2) particles in Debye sphere Partial screening -> liquid-like properties
- Test QGP screening with heavy quark bound states Do they survive? All? None? Some? Which size?
- Are residual correlations important?

\sqrt{s} dependence of suppression effects

J/ψ Suppression and Elliptic Flow

- Suppression at high p_T (central) systematically smaller than low p_T
- Consistent with calculations attributing high p_T suppression mainly to color screening.

- v₂ consistent with zero at p_T > 2 GeV/c (20-60%)
- Disfavors coalescence of thermalized charm quarks as dominant source

Upsilon Suppression: should be cleaner

1S state is tightly bound small nuclear absorption (but 2S & 3S...)
negligible contribution from regeneration (few b-bbar pairs)
but initial state formation effects still matter!

 Centrality dependence with improved p+p reference
 -consistent with the scenario that all excited states melt

Expansion: Another great tool to study strong coupling

Does hot QCD matter exhibit collectivity?

Look for collective flow via velocity boosts

Is the expansion hydrodynamical? Model expansion of the system with fluid dynamics

$$\partial_t \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ e \end{pmatrix} + \partial_x \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ u(e+p) \end{pmatrix} + \partial_y \begin{pmatrix} \rho v \\ \rho uv \\ \rho v^2 + p \\ v(e+p) \end{pmatrix} - \\ \partial_x \begin{pmatrix} 0 \\ \tau_{11} \\ \tau_{12} \\ \tau_{11}u + \tau_{12}v + k\partial_x \Theta \end{pmatrix} - \partial_x \begin{pmatrix} 0 \\ \tau_{21} \\ \tau_{22} \\ \tau_{21}u + \tau_{22}v + k\partial_y \Theta \end{pmatrix} = 0$$

where u and v are the components of the velocity, ρ the density, p the pressure, e total energy density, τ_{ij} the components of the viscous part of the stress tensor, Θ the absolute temperature and k is the heat conductivity.

31

Elliptic flow scales with number of quarks

implication: valence quarks, not hadrons pressure builds early, dressed quarks are similar behavior seen at LHC All particles flow as if frozen out from a flowing soup of constituent quarks

Multistrange quarks, with precision now

- 0-30%: baryon-meson grouping / NCQ scaling holds.
- 30-80%: Multi-strange hadron v₂ deviate from NCQ scaling at m_T-m₀>1 GeV/c².

➔ Precision tool to constrain sQGP properties.

Precision from PHENIX

In central Au + Au v_2 of protons is higher than pions to p_T = 6 GeV/c. In 20-60% centrality, they approach each other at high p_T .

A break of n_q scaling is observed in 20-60% centrality at $KE_T > 0.7$ GeV. But in the 0-20% centrality, scaling still holds.

Production at intermediate p_T for different centralities have different mix of jet fragments vs. coalescence of flowing medium

Control the geometry – try U+U

- The ετ only increases around 20% from 0-10% Au + Au to
 0-1% U + U collision.
- Strong mass ordering for π & p v₂ in 0-2% central U + U collision at 193 GeV are observed even though the increase in ετ is relatively small. Radial flow or geometry?

Fluctuations matter!

- Reproduce with hydro
- IF include fluctuating initial conditions
- Provides a tool to better pin down the viscosity/entropy ratio

- Nucleons move around inside the nucleus
- -> locations of NN scattering fluctuate
- -> apparent symmetry effects yielding only even harmonics not realistic

Higher moments more sensitive to viscosity

- Longitudinal expansion at v ~ c
- "freezes in" small shape perturbations
 e.g. triangular fluctuations (v₃)
- Viscosity opposes dissipation!

Data prefer smaller eccentricity & low η/s

Thermal radiation and hadron gas effects

New measurement of thermal photons

- PHENIX has a new method to detect direct photons:
 - Use photon conversions to e⁺e⁻
 - Tag contribution from π^0 decays & compare to MC
 - Independent systematic uncertainties

Results agree with earlier result on photon yield & flow! How to reconcile yield (early emission) & large flow (late)?

Dielectron puzzle

Excess difficult to understand
 Pre-equilibrium effect? (γ are surprising too)

Dielectron Production

The devil is in the background

43

PHENIX added hadron blind detector

Windowless CF4 Cherenkov detector; GEM/CSI photo cathode readout in B-field free region

Goal: improve S/B by rejecting conversions and π⁰ Dalitz decays

- Figure of merit: N₀ = 322 cm⁻¹, 20 p.e. for a single electron
- Preliminary results:

S/B improvement of ~5 wrt previous results w/o HBD

In Au+Au

Stay tuned to this channel!

• Backup

Currently a raging debate

• Just WHAT is interacting in the hot dense plasma?

Individual gluons? Pure fields?

Multi-gluons that continuously split & re-form? i.e. composite quasiparticles (in classical liquids voids fill this role)

Energy loss mechanism tests these ideas Quantify dynamical properties of this new material: Viscosity, speed of sound, diffusion i.e. transport of momentum, energy & particles 48

The experiments

π v₁ in Cu + Au at 200 GeV

20% of full statistics

□ Sizeable positive v₁ is observed at p_T > 1GeV/c with Ψ_{1,smd}, which direction is decided by the Au spectators. It indicates that there are more particles emitted from the Au side than from the Cu side .

It may be due to asymmetric density profile, pressure gradient and anti-flow effect

The v_1 of protons will be measured in near future after production of full statistics. It will help us to further address the physics of this positive v_1

Comparison to EPS09 calculation

- Single electrons from heavy flavor semi-leptonic decays • Enhancement at intermediate p_{T} \rightarrow Cronin-like $k_{\rm T}$ scattering? No evidence of suppression \rightarrow Au+Au effect entirely HNM? • Detector configuration prevents measurement below $p_{\rm T} \sim 0.8 \ {\rm GeV}/c$ Shadowing-only calculation reproduces peripheral modification, but not central
- \rightarrow Opposite of π^0 case
- \rightarrow Need additional physics

8/13/12

We measure electrons

Charm v₂

Using DCA decomposition

Watch QGP blow up \rightarrow collective flow (v₂)

Surprise: viscosity/entropy is small

Viscosity: inability to transport momentum & sustain a wave low viscosity → absorbs particles & transports disturbances Viscosity/entropy near 1/4π limit from quantum mechanics! ∴ liquid at RHIC is "perfect"

Example: milk. Liquids with higher viscosities will not splash as high when poured at the same velocity.

Good momentum transport: neighboring fluid elements "talk" to each other

→ QGP is strongly coupled
 Should affect opacity :
 e.g. q,g collide with "clumps"

of gluons, not individuals

Many types of strongly coupled matter

Quark gluon plasma is like other systems with strong coupling - all flow and exhibit phase transitions

Dusty plasmas & warm, dense plasmas

Ultracold atomic gas

Strongly correlated

In all these cases have a competition: Attractive forces ⇔ repulsive force or kinetic energy High T_c superconductors: magnetic vs. potential energy Result: many-body interactions, not pairwise!

So, it must be quark gluon plasma

Thermal photons also flow!

arXiv:1105.4126

+ photons from expanding hadron gas

What are the properties of hot QCD matter?

- <u>thermodynamic (equilibrium)</u>
 - T, P, ρ EOS (relation between T, P, V, energy density) v_{sound} , static screening length
- transport properties (non-equilibrium)*
 particle number, energy, momentum, charge
 diffusion sound viscosity conductivity

In plasma: interactions among charges of multiple particles charge is spread, screened in characteristic (Debye) length, λ_D *NB: we deal with strong, not EM force: exchange g instead of* γ

> measuring these is new for nuclear/particle physics! Nature is nasty to us: does a time integral...

Lepton pair emission ↔ EM correlator

e.g. Rapp, Wambach Adv.Nucl.Phys 25 (2000)

Yasuyuki Akiba - PHENIX QM09

e⁺e⁻ looks intriguing

We're taking more, better data now

64

Fluctuations, flow and the quest for η/s

arXiv:1105.3928

c,b decays via single electron spectrum

compare data to "cocktail" of (measured) hadronic decays PRL 96, 032301 (2006)