The phase diagram of QCD from Dyson-Schwinger equations

Jan Lücker in collaboration with Christian S. Fischer

JLU Gießen

September 17, 2012

C. S. Fischer, JL, arXiv:1206.5191

C. S. Fischer, JL, J. A. Mueller, Phys.Lett. B702 (2011) 438-441

The phase diagram of QCD

- Critical end-point (CEP)?
- Chiral symmetry restoration and deconfinement coincide?

Why Dyson-Schwinger?

Lattice QCD

- ③ Ab-initio
- Only for small µ
 (sign problem)

Effective field theories

- So sign problem
- Effective degrees of freedom

Dyson-Schwinger

- So sign problem
- © QCD degrees of freedom
- S Truncation scheme needed

Dyson-Schwinger equations

Derive from generating functional Z_{QCD} :

+ DSEs for all higher *n*-point functions

Order parameters: chiral symmetry breaking

Confinement: dual condensate

$$\Sigma_{\pm 1} = \int rac{darphi}{2\pi} e^{\mp i arphi} \langle ar{\psi} \psi
angle_arphi$$

- $\langle \bar{\psi}\psi \rangle_{\varphi}$ for quarks with $\psi(\vec{x}, 1/T) = e^{i\varphi}\psi(\vec{x}, 0)$
- Dressed Polyakov loop
- Sensitive to center symmetry

\Rightarrow confinement/deconfinement

C. Gattringer, Phys. Rev. Lett. 97 (2006) F. Synatschke, A. Wipf, C. Wozar, Phys. Rev. D75 (2007) E. Bilgici, F. Bruckmann, C. Gattringer, C. Hagen, Phys. Rev. D77 (2008)

Truncation scheme

Needed:

- Gluon propagator
- Quark-gluon vertex ****

Problems:

- T, μ dependence
- Reaction on phase transitions

Quark-gluon vertex

$$\Gamma_{\mu} = \gamma_{\mu} \cdot \Gamma(p^2, k^2, q^2) \cdot \left(\delta_{\mu, 4} \frac{C(p) + C(q)}{2} + \delta_{\mu, i} \frac{A(p) + A(q)}{2}\right)$$

- Dependence on dressings from Slavnov-Taylor
- Ansatz function F

Ansatz function

$$\Gamma(p^2, k^2, q^2) = \frac{d_1}{d_2 + q^2} + \frac{q^2}{\Lambda^2 + q^2} \left(\frac{\beta_0 \alpha(\mu) \ln[q^2/\Lambda^2 + 1]}{4\pi}\right)^{2\delta}$$

We fix the IR part by f_π at $T = 0$

The Columbia plot

• We will start with $N_f = 0$

Quenched QCD

\Rightarrow from temperature-dependent lattice QCD

Fischer, Maas, Mueller EPJ C68 Maas, Pawlowski, von Smekal, Spielmann, arXiv:1110.6340 (hep-lat)

Quenched QCD

Results from quark DSE

JL and C. S. Fischer, arXiv:1111.0180 (hep-ph).

\Rightarrow Pattern of chiral and center symmetry breaking reproduced

Jan Lücker, September 17, 2012

The Columbia plot

• $N_f = 2$: introduce a chemical potential

Unquenched QCD

• Use quenched gluon as input, unquench via DSE

 \Rightarrow coupled equations

Thermal masses

 $N_f = 2 \text{ QCD}$

$$m_{th}^2 = \Pi_L^{ql}(0)/2$$

- Gluon sensitive to chiral symmetry breaking
- \Rightarrow Back coupling leads to steeper crossover

Phase diagram for two flavours

- CEP at $\mu/T \approx 1.1$
- Chiral and deconfinement phase transitions coincide
- Back coupling brings CEP to smaller μ

The Columbia plot

• Include strange quarks: $N_f = 2 + 1$

Strange quarks

Light/strange condensates and Debye masses

Coupling of strange
 and light quarks visible

Strange quarks

Lattice data from S. Borsanyi et al. (Wuppertal-Budapest Collaboration), JHEP 1009 (2010) 073

Phase diagram for two+one flavours

• CEP at $\mu/T \approx 1.9$

- Strange quarks reduce $T_{\rm C}$, CEP moves to larger μ

Summary

- Quenched QCD: lattice data reproduced
- Unquenching from quark loop
 - Chiral transition accelerated
 - Strange quarks can be taken into account
- A CEP is found
- Deconfinement coincides with chiral symmetry restoration