Measurements of Jet v_{2} in STAR at RHIC

Alice Ohlson
Yale University
For the STAR Collaboration

17 September 2012

Outline

- What is jet v_{2} ?
- Measuring Jet v_{2}
- Jets in STAR
- Jet - Event Plane Bias
- Jet v_{2} and trigger v_{2}
- Jet v_{2} vs Centrality
- Jet v_{2} vs Reconstructed Jet p_{T}
- Conclusions

Jets \& Azimuthal Anisotropy

- Hard-scattered partons fragment into collimated "jets" of hadrons
- Use jets to probe medium-induced parton energy loss in heavy ion collisions

- Jets traverse an anisotropic medium

What is Jet v_{2} ?

In-medium pathlength depends on orientation to reaction plane

Pathlength-dependent jet quenching

Energy/number of reconstructed jets may depend on orientation to reaction plane.

- "Jet $v_{2} " \rightarrow$ correlation between reconstructed jets and the reaction plane (or $2^{\text {nd }}$-order participant plane)
- "Jet $v_{2} " \neq$ "Jet flow"

Measuring Jet v_{2}

- Why measure Jet v_{2} ?
\rightarrow Information about pathlength-dependent parton energy loss
\rightarrow Information about jet-finding techniques and biases
\rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_{2} :

$$
v_{2}^{\mathrm{jet}}=\frac{\left\langle\cos \left(2\left(\phi_{\mathrm{jet}}-\Psi_{\mathrm{EP}}\right)\right)\right\rangle}{R e s}
$$

Measuring Jet v_{2}

- Why measure Jet v_{2} ?
\rightarrow Information about pathlength-dependent parton energy loss
\rightarrow Information about jet-finding techniques and biases
\rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_{2} :

1) Angle of reconstructed jet axis
$v_{2}^{\mathrm{jet}}=\frac{\left\langle\cos \left(2\left(\phi_{\mathrm{jet}}-\Psi_{\mathrm{EP}}\right)\right)\right\rangle}{R e s}$

Measuring Jet v_{2}

- Why measure Jet v_{2} ?
\rightarrow Information about pathlength-dependent parton energy loss
\rightarrow Information about jet-finding techniques and biases
\rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_{2} :

1) Angle of reconstructed jet axis

$$
v_{2}^{\mathrm{jet}}=\frac{\left\langle\cos \left(2\left(\phi_{\mathrm{jet}}-\Psi_{\mathrm{EP}}\right)\right)\right\rangle}{R e s}
$$

2) Azimuthal angle of event plane

$$
\Psi_{\mathrm{EP}}=\frac{1}{2} \tan ^{-1}\left(\frac{\sum_{i} w_{i} \sin \left(2 \phi_{i}\right)}{\sum_{i} w_{i} \cos \left(2 \phi_{i}\right)}\right)
$$

Measuring Jet v_{2}

- Why measure Jet v_{2} ?
\rightarrow Information about pathlength-dependent parton energy loss
\rightarrow Information about jet-finding techniques and biases
\rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_{2} :

1) Angle of reconstructed jet axis

$$
v_{2}^{\mathrm{jet}}=\frac{\left\langle\cos \left(2\left(\phi_{\mathrm{jet}}-\Psi_{\mathrm{EP}}\right)\right)\right\rangle}{R e s}
$$

2) Azimuthal angle of event plane

$$
\Psi_{\mathrm{EP}}=\frac{1}{2} \tan ^{-1}\left(\frac{\sum_{i} w_{i} \sin \left(2 \phi_{i}\right)}{\sum_{i} w_{i} \cos \left(2 \phi_{i}\right)}\right)
$$

3) Event plane resolution

Jets at STAR

Run $7 \mathrm{Au}+\mathrm{Au} \sqrt{\mathrm{s}}_{\mathrm{NN}}=200 \mathrm{GeV}$
High Tower (HT) Trigger \longrightarrow Online Trigger
Trigger Jets found with Anti- k_{T} algorithm [1]

$$
\left(\mathrm{R}=0.4, \mathrm{p}_{\mathrm{T}}^{\text {track,tower }}>2 \mathrm{GeV} / c\right)
$$

[1] M. Cacciari and G. Salam, Phys. Lett. B 641, 57 (2006)
$\mathrm{E}_{\mathrm{T}}>5.4 \mathrm{GeV}$ in one tower
$\Delta \varphi \times \Delta \eta=0.05 \times 0.05$
Offline cut: $\mathrm{E}_{\mathrm{T}}>5.5 \mathrm{GeV}$

Jet - Event Plane Bias

Simulation:
PYTHIA jets embedded in thermal background

- Calculating the event plane at mid-rapidity leads to significant jet - event plane bias!
- Need to determine event plane at forward rapidities to measure jet v_{2} at mid-rapidity...

STAR Forward Capabilities

Zero Degree Calorimeter Shower Maximum Detectors
\rightarrow Spectator neutrons

$$
|\eta|>6.3
$$

Forward Time Projection Chambers
\rightarrow Charged particle tracks $2.8<|\eta|<3.7$

STAR Forward Capabilities

Zero Degree Calorimeter Shower Maximum Detectors
\rightarrow Spectator neutrons

$$
\begin{aligned}
|\eta| & >6.3 \\
|\Delta \eta| & >5.7
\end{aligned}
$$

Forward Time Projection Chambers
\rightarrow Charged particle tracks $2.8<|\eta|<3.7$
$\left|\eta_{\text {jet }}\right|<0.6$
$|\Delta \eta|>2.2$

Event Plane Resolution

- Resolution determined from sub-event plane method
- Mixed harmonics: measure $v_{2}\{\mathrm{ZDC}-\mathrm{SMD}\}$ with respect to Ψ_{1}

Jet v_{2} and Trigger v_{2}

- Jet $v_{2}\{$ TPC EP $\}$
\circ HT trigger $v_{2}\{$ TPC EP $\}$
- Jet $v_{2}\{\mathrm{TPC}\}>\mathrm{HT} v_{2}\{\mathrm{TPC}\} \rightarrow$ Jet - event plane bias is more significant when jets have additional high $-\mathrm{p}_{\mathrm{T}}$ fragments

Jet v_{2} and Trigger v_{2}

Jet Definition:
HT trigger $\mathrm{E}_{\mathrm{T}}>5.5 \mathrm{GeV}$ constituent $\mathrm{p}_{\mathrm{T}}{ }^{\text {cut }}=2 \mathrm{GeV} / c$

- Jet $v_{2}\{\mathrm{TPC} \mathrm{EP}\}$
- Jet $v_{2}\{$ FTPC EP $\}$

O HT trigger $v_{2}\{\mathrm{TPC} \mathrm{EP}\}$
$\bigcirc \mathrm{HT}$ trigger $v_{2}\{\mathrm{FTPC} \mathrm{EP}\}$

- Jet $v_{2}\{\mathrm{TPC}\}>\mathrm{HT} v_{2}\{\mathrm{TPC}\} \rightarrow$ Jet - event plane bias is more significant when jets have additional high- p_{T} fragments
- Jet $v_{2}\{$ FTPC $\} \sim \mathrm{HT} v_{2}\{$ FTPC $\} \rightarrow$ Surface bias / bias towards unmodified jets is largely driven by high $-\mathrm{p}_{\mathrm{T}}$ trigger requirement

Jet v_{2} and Trigger v_{2}

Jet Definition:
HT trigger $\mathrm{E}_{\mathrm{T}}>5.5 \mathrm{GeV}$
constituent $\mathrm{p}_{\mathrm{T}}{ }^{\text {cut }}=2 \mathrm{GeV} / c$

- Jet $v_{2}\{\mathrm{TPC} \mathrm{EP}\}$
- Jet $v_{2}\{$ FTPC EP $\}$
- Jet $v_{2}\{Z \mathrm{ZC}-\mathrm{SMD} \mathrm{EP}\}$
\bigcirc HT trigger $\nu_{2}\{$ TPC EP $\}$
$\bigcirc \mathrm{HT}$ trigger $v_{2}\{\mathrm{FTPC} \mathrm{EP}\}$
○ HT trigger $v_{2}\{$ ZDC-SMD EP $\}$
- Jet $v_{2}\{\mathrm{TPC}\}>\mathrm{HT} v_{2}\{\mathrm{TPC}\} \rightarrow$ Jet - event plane bias is more significant when jets have additional high $-\mathrm{p}_{\mathrm{T}}$ fragments
- Jet $v_{2}\{$ FTPC $\} \sim \mathrm{HT} v_{2}\{$ FTPC $\} \rightarrow$ Surface bias / bias towards unmodified jets is largely driven by high- p_{T} trigger requirement
- HT $v_{2}\{$ ZDC-SMD EP $\}>0$

Jet v_{2} vs Centrality

Jet Definition:
HT trigger $\mathrm{E}_{\mathrm{T}}>5.5 \mathrm{GeV}$ constituent $\mathrm{p}_{\mathrm{T}}{ }^{\text {cut }}=2 \mathrm{GeV} / c$

- Jet $v_{2}\{$ TPC EP $\}$
- Jet $v_{2}\{$ FTPC EP $\}$
- Jet $v_{2}\{$ ZDC-SMD EP $\}$
- Jet $v_{2}\{$ FTPC $\}$ is non-zero.
\rightarrow Pathlength-dependent parton energy loss
- $v_{2}\{$ FTPC $\}$ shows no clear centrality dependence outside statistical uncertainties.
- Caveat: Reconstructed jet energy has slight dependence on centrality

Jet v_{2} vs Reconstructed Jet p_{T}

Jet Definition:
HT trigger $\mathrm{E}_{\mathrm{T}}>5.5 \mathrm{GeV}$ constituent $\mathrm{p}_{\mathrm{T}}{ }^{\text {cut }}=2 \mathrm{GeV} / c$

- Jet $v_{2}\{$ TPC EP $\}$
- Jet $v_{2}\{$ FTPC EP $\}$
- Jet $v_{2}\{$ ZDC-SMD EP $\}$

- Jet $v_{2}\{$ FTPC $\}>$ Jet $v_{2}\{$ ZDC-SMD $\}$
\rightarrow In single-particle v_{2} measurements, this difference is attributed to flow in participant plane vs. reaction plane, $v_{2}(\mathrm{PP})>v_{2}(\mathrm{RP})$
\rightarrow Jet energy loss sensitive to geometry in participant frame?

Conclusions

- The correlation between reconstructed jets and the reaction plane $/ 2^{\text {nd }}$-order participant plane has been measured.

Conclusions

- The correlation between reconstructed jets and the reaction plane $/ 2^{\text {nd }}$-order participant plane has been measured.
- Jet - event plane bias is reduced by using detectors at forward rapidities for event plane determination.

Conclusions

- The correlation between reconstructed jets and the reaction plane $/ 2^{\text {nd }}$-order participant plane has been measured.
- Jet - event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet $v_{2}\{$ FTPC $\}$ is observed. \rightarrow Indicative of pathlength-dependent parton energy loss.

Conclusions

- The correlation between reconstructed jets and the reaction plane / $2^{\text {nd }}$-order participant plane has been measured.
- Jet - event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet $v_{2}\{$ FTPC $\}$ is observed. \rightarrow Indicative of pathlength-dependent parton energy loss.
- Measurements of jet v_{2} with respect to the event plane measured at forward rapidities show...
\rightarrow The bias towards unmodified jets is largely due to the trigger requirement.
\rightarrow Within the kinematic regions studied, jet v_{2} increases with p_{T} and is roughly independent of centrality.

Conclusions

- The correlation between reconstructed jets and the reaction plane / $2^{\text {nd }}$-order participant plane has been measured.
- Jet - event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet $v_{2}\{$ FTPC $\}$ is observed. \rightarrow Indicative of pathlength-dependent parton energy loss.
- Measurements of jet v_{2} with respect to the event plane measured at forward rapidities show...
\rightarrow The bias towards unmodified jets is largely due to the trigger requirement.
\rightarrow Within the kinematic regions studied, jet v_{2} increases with p_{T} and is roughly independent of centrality.
- Can be used to further constrain theories of pathlengthdependent parton energy loss and parton-medium interactions.

Backup

Event Plane Calculations

- TPC: $0.2<\mathrm{p}_{\mathrm{T}}{ }^{\text {track }}<2.0, \mathrm{p}_{\mathrm{T}}$-weighting

Corrections: φ-weighting

- FTPC: $0.2<\mathrm{p}_{\mathrm{T}}{ }^{\text {track }}<2.0, \mathrm{p}_{\mathrm{T}}$-weighting

Corrections: recentering, shifting

- ZDC-SMD

Corrections: recentering, shifting

Artificial Sources of Anisotropy

- Background Fluctuations and the Jet Energy Scale Background particles (with $\mathrm{p}_{\mathrm{T}}>2 \mathrm{GeV} / c$) with significant v_{2} are more likely to be clustered into the jet cone in-plane versus out-of-plane
\rightarrow more low- p_{T} jets reconstructed with a higher p_{T}
\rightarrow increased number of in-plane jets in a fixed reconstructed jet p_{T} range
- Biased Event Plane

Jet fragments included in event plane calculation \rightarrow event plane pulled towards jet

Background Fluctuations

- Embed $\mathrm{p}+\mathrm{p} \mathrm{HT}$ jets isotropically into $\mathrm{Au}+\mathrm{Au}$ minimum bias events
- Reconstruct p_{T} of $\mathrm{p}+\mathrm{p}$ jet before and after embedding
- Correlate reconstructed jet axis with event plane of $\mathrm{Au}+\mathrm{Au}$ event
- Calculate jet v_{2} for a given range in jet p_{T}

Jet Definition:
HT trigger $\mathrm{E}_{\mathrm{T}}>5.5 \mathrm{GeV}$ constituent $\mathrm{p}_{\mathrm{T}}{ }^{\text {cut }}=2 \mathrm{GeV} / c$
O jet p_{T} calculated before embedding

- jet p_{T} calculated after embedding
- difference
- Artificial jet v_{2} caused by background fluctuations is $\sim 4 \%$
- Subtract from measured jet v_{2} values.

Does the recoil jet hit the FTPC?

$10<$ pThat $<40 \mathrm{GeV} / \mathrm{c}$
 ——both partons in all events
 __ partons whose partner falls within $|\eta|<0.6$

$$
15<\text { pThat }<40 \mathrm{GeV} / c
$$

both partons in all events
partons whose partner falls within $|\eta|<0.6$

- For pThat $>10 \mathrm{GeV} / c$, in 2 M events, <10 partons point towards the η region covered by the FTPC
- For pThat $>15 \mathrm{GeV} / c$, in 2 M events, 0 partons point towards the η region covered by the FTPC

Participant vs. Reaction Plane

- $v_{2}\{\mathrm{PP}\}>v_{2}\{\mathrm{RP}\}$

FIG. 6: (Color online) The values of v_{2} from various analysis methods vs centrality. Both the upper lines [3] and the lower line [25] are STAR data.

FIG. 7: (Color online) The data from Fig. 6 corrected to $\left\langle v_{2}\right\rangle$ in the participant plane.
J.-Y. Ollitrault, A. M. Poskanzer, and S. A. Voloshin, PRC 80 (2009) 014904

Reco. Jet p_{T} vs. Centrality

- Embed $\mathrm{p}+\mathrm{p}$ HT trigger jets into $\mathrm{Au}+\mathrm{Au}$ minimum bias events
- Reconstructed jet energy of embedded jets: $10<\mathrm{p}_{\mathrm{T}}{ }^{\text {jet }}<15 \mathrm{GeV} / \mathrm{c}$
- Distribution of $\mathrm{p}+\mathrm{p}$ jet energies (reconstructed before embedding, with $\mathrm{p}_{\mathrm{T}}{ }^{\text {cut }}=0.2 \mathrm{GeV} / \mathrm{c}$):

- Reconstructing jets in $\mathrm{Au}+\mathrm{Au}$ samples slightly higher parton energies in peripheral events than in central (by $\sim 2-5 \mathrm{GeV}$)

