

Measurements of Jet v_2 in STAR at RHIC

Alice Ohlson Yale University For the STAR Collaboration

17 September 2012

Outline

STAR

- What is jet v_2 ?
- Measuring Jet v_2
- Jets in STAR
- Jet Event Plane Bias
- Jet v_2 and trigger v_2
- Jet v_2 vs Centrality
- Jet v_2 vs Reconstructed Jet p_T
- Conclusions

Jets & Azimuthal Anisotropy

- Hard-scattered partons fragment into collimated "jets" of hadrons
- Use jets to probe medium-induced parton energy loss in heavy ion collisions
- Jets traverse an anisotropic medium

Jet v_2 in STAR – A. Ohlson

AR

What is Jet v_2 ?

In-medium pathlength depends on orientation to reaction plane

> Pathlength-dependent jet quenching

Energy/number of reconstructed jets may depend on orientation to reaction plane.

- "Jet v_2 " \rightarrow correlation between *reconstructed* jets and the reaction plane (or 2nd -order participant plane)
- "Jet v_2 " \neq "Jet flow"

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

1) Angle of reconstructed jet axis

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

1) Angle of reconstructed jet axis 2) Azimuthal angle of event plane $\Psi_{\rm EP} = \frac{1}{2} \tan^{-1} \left(\frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right)$

- Why measure Jet v_2 ?
 - \rightarrow Information about pathlength-dependent parton energy loss
 - \rightarrow Information about jet-finding techniques and biases
 - \rightarrow Necessary for background subtraction in jet-hadron correlations
- How to measure jet v_2 :

$$v_2^{\text{jet}} = \frac{\left\langle \cos\left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \right\rangle}{Res}$$

1) Angle of reconstructed jet axis 2) Azimuthal angle of event plane $\Psi_{\rm EP} = \frac{1}{2} \tan^{-1} \left(\frac{\sum_i w_i \sin(2\phi_i)}{\sum_i w_i \cos(2\phi_i)} \right)$

3) Event plane resolution

Jets at STAR

Run 7 Au+Au $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ High Tower (HT) Trigger \frown Online Trigger Trigger Jets found with Anti-k_T algorithm [1] (R = 0.4, p_T^{track,tower} > 2 GeV/c). [1] M. Cacciari and G. Salam, Phys. Lett. B 641, 57 (2006) \bigcirc Online Trigger $\Delta \phi \times \Delta \eta = 0.05 \times 0.05$ Offline cut: E_T > 5.5 GeV

Au+Au 0-20% $p_{t,iet}^{rec} \approx 22 \text{ GeV/}c$ **STAR Preliminary** 10 p_T per grid cell (GeV) 8 4 b.8.6.4.2 η -b.2.4.6.8 -1 0 3 Φ

Jet – Event Plane Bias

Simulation: PYTHIA jets embedded in thermal background

- Calculating the event plane at mid-rapidity leads to significant jet event plane bias!
- Need to determine event plane at forward rapidities to measure jet *v*₂ at mid-rapidity...

STAR Forward Capabilities

Zero Degree Calorimeter – Shower Maximum Detectors \rightarrow Spectator neutrons $|\eta| > 6.3$ Forward Time Projection Chambers \rightarrow Charged particle tracks $2.8 < |\eta| < 3.7$

STAR Forward Capabilities

Zero Degree Calorimeter –
Shower Maximum Detectors
 \rightarrow Spectator neutrons
 $|\eta| > 6.3$
 $|\Delta \eta| > 5.7$ For the second second

Forward Time Projection Chambers \rightarrow Charged particle tracks $2.8 < |\eta| < 3.7$

 $|\Delta \eta| > 2.2$

17 September 2012

Event Plane Resolution

- Resolution determined from sub-event plane method
- Mixed harmonics: measure v_2 {ZDC-SMD} with respect to Ψ_1

Jet v_2 and Trigger v_2

• Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet – event plane bias is more significant when jets have additional high-p_T fragments

Jet v_2 and Trigger v_2

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

• Jet v_2 {TPC EP}

• Jet v_2 {FTPC EP}

- HT trigger v_2 {TPC EP}
- HT trigger v_2 {FTPC EP}
- Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet event plane bias is more significant when jets have additional high-p_T fragments
- Jet v_2 {FTPC} ~ HT v_2 {FTPC} \rightarrow Surface bias / bias towards unmodified jets is largely driven by high-p_T trigger requirement

Jet v_2 and Trigger v_2

Jet Definition: HT trigger $E_T > 5.5 \text{ GeV}$ constituent $p_T^{cut} = 2 \text{ GeV}/c$

- Jet v_2 {TPC EP}
- Jet v_2 {FTPC EP}
- Jet v_2 {ZDC-SMD EP}
- HT trigger v_2 {TPC EP}
- HT trigger v_2 {FTPC EP}

• HT trigger v_2 {ZDC-SMD EP}

- Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet event plane bias is more significant when jets have additional high-p_T fragments
- Jet v_2 {FTPC} ~ HT v_2 {FTPC} \rightarrow Surface bias / bias towards unmodified jets is largely driven by high-p_T trigger requirement
- HT v_2 {ZDC-SMD EP} > 0

Jet v_2 vs Centrality

STAR

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- Jet v_2 {TPC EP}
- Jet v_2 {FTPC EP}
- Jet v_2 {ZDC-SMD EP}

• Jet v_2 {FTPC} is non-zero.

 \rightarrow Pathlength-dependent parton energy loss

- v_2 {FTPC} shows no clear centrality dependence outside statistical uncertainties.
- Caveat: Reconstructed jet energy has slight dependence on centrality

Jet v_2 vs Reconstructed Jet p_T

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- Jet v_2 {TPC EP}
- Jet v_2 {FTPC EP}
- Jet v_2 {ZDC-SMD EP}

Jet v₂{FTPC} > Jet v₂{ZDC-SMD}
→ In single-particle v₂ measurements, this difference is attributed to flow in participant plane vs. reaction plane, v₂(PP) > v₂(RP)
→ Jet energy loss sensitive to geometry in participant frame?

• The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet event plane bias is reduced by using detectors at forward rapidities for event plane determination.

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet v_2 {FTPC} is observed.

 \rightarrow Indicative of pathlength-dependent parton energy loss.

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet v_2 {FTPC} is observed.
 - \rightarrow Indicative of pathlength-dependent parton energy loss.
- Measurements of jet v_2 with respect to the event plane measured at forward rapidities show...
 - \rightarrow The bias towards unmodified jets is largely due to the trigger requirement.
 - \rightarrow Within the kinematic regions studied, jet v_2 increases with p_T and is roughly independent of centrality.

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet v_2 {FTPC} is observed.
 - \rightarrow Indicative of pathlength-dependent parton energy loss.
- Measurements of jet v_2 with respect to the event plane measured at forward rapidities show...
 - \rightarrow The bias towards unmodified jets is largely due to the trigger requirement.
 - \rightarrow Within the kinematic regions studied, jet v_2 increases with p_T and is roughly independent of centrality.
- Can be used to further constrain theories of pathlengthdependent parton energy loss and parton-medium interactions.

Backup

17 September 2012

Jet v₂ in STAR – A. Ohlson

Event Plane Calculations

• TPC: $0.2 < p_T^{track} < 2.0, p_T^{track}$ -weighting

Corrections: φ-weighting

- FTPC: $0.2 < p_T^{track} < 2.0, p_T^{track}$ weighting Corrections: recentering, shifting
- ZDC-SMD

Corrections: recentering, shifting

Artificial Sources of Anisotropy

- Background Fluctuations and the Jet Energy Scale Background particles (with $p_T > 2 \text{ GeV}/c$) with significant v_2 are more likely to be clustered into the jet cone in-plane versus out-of-plane
 - \rightarrow more low-p_T jets reconstructed with a higher p_T
 - \rightarrow increased number of in-plane jets in a fixed reconstructed jet p_T range
- Biased Event Plane

Jet fragments included in event plane calculation \rightarrow event plane pulled towards jet

Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition: HT trigger $E_T > 5.5$ GeV constituent $p_T^{cut} = 2$ GeV/c

- $\circ~$ jet $p_{\rm T}$ calculated before embedding
- jet p_T calculated after embedding
- difference
- Artificial jet v_2 caused by background fluctuations is ~ 4%
- Subtract from measured jet v_2 values.

Does the recoil jet hit the FTPC?

- For pThat > 10 GeV/c, in 2M events, < 10 partons point towards the η region covered by the FTPC
- For pThat > 15 GeV/c, in 2M events, 0 partons point towards the η region covered by the FTPC

AR

Participant vs. Reaction Plane

FIG. 6: (Color online) The values of v_2 from various analysis methods vs centrality. Both the upper lines [3] and the lower line [25] are STAR data.

 X_{RP}

Reco. Jet p_T vs. Centrality

- Embed p+p HT trigger jets into Au+Au minimum bias events
- Reconstructed jet energy of embedded jets: $10 < p_T^{jet} < 15 \text{ GeV/c}$
- Distribution of p+p jet energies (reconstructed before embedding, with $p_T^{cut} = 0.2 \text{ GeV/c}$):

 Reconstructing jets in Au+Au samples slightly higher parton energies in peripheral events than in central (by ~2-5 GeV)

17 September 2012

Jet v_2 in STAR – A. Ohlson