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A phenomenologist’s view
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A phenomenologist’s view

[Luzum, Romatschke ’08]

“RHIC serves the perfect fluid” (2005)

large v2 ⇒ small η/s!
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What does small η/s mean?

η/s is a measure for the interaction strength!

Perturbative QCD
well justified for highest energy densities→ small couplings (asymptotic
freedom)
leading result for shear viscosity

η

s
=

#

g4 log(#/g)

η/s ∼ 5 for gauge coupling g ∼ 1⇒ magnitudes too large!
[Huot, Jeon, Moore ’06]

η/s <∼ O(1)⇒ Strong coupling effect!
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The challenge of strong coupling

Lattice QCD
powerful non-perturbative tool
not suited for real time phenomena (transport coefficients)
(see however [Meyer ’09] )

Gauge/gravity duality

string theory inspired method to study large N gauge theories at strong
coupling
not (yet ?) established for QCD
⇒ Need to study “wrong” theory!

thermal state in boundary theory

m

black hole geometry
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Holographic view [Policastro, Son, Starinets ’01]

ψψ ψ
J
J
JĴ

B
B
BBN ?

absorbtion of transverse gravitons ψ = hj
i (∼ T i

j )

ηi k
j l = lim

ω→0
Im

i
ω

∫
d4x eiωtθ(t)

〈
[T i

j (t ,0),T k
l (0,0)]

〉
=
σabs(0)

16πG

Einstein eqs. to linear order in ψ

�ψ = 0 massless scalar

⇒ ηx x
y y = η =

A
16πG

=
s

4π

Only assumptions: 2 derivative gravity and isotropy
[Kovtun, Son, Starinets ’03; Buchel, Liu ’03; Kovtun, Son, Starinets ’04]
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The holographic viscosity bound η/s ≥ 1/4π
conjectured lower (quantum) bound for any fluid in nature
[Kovtun, Son, Starinets ’04]
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Figure 2: The viscosity-entropy ratio for some common substances: helium, nitrogen and

water. The ratio is always substantially larger than its value in theories with gravity duals,

represented by the horizontal line marked “viscosity bound.”

experimentally whether the shear viscosity of these gases satisfies the conjectured bound.
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How to violate it?
higher derivative gravity?

finite coupling corrections increase η/s [Buchel, Liu ’05]

but also higher derivative gravity theories that violate the bound were found
[Kats, Petrov ’07; Buchel, Myers, Sinha ’08]

spatial anisotropy?

non-commutative N = 4 SYM plasma satisfies the bound
[Landsteiner, Mas ’07]

anisotropic p-wave superfluids have a non-universal shear viscosity
component above the bound [Erdmenger, Kerner, Zeller ’10]

anisotropic axion-dilaton gravity violates the bound [Rebhan, DS ’11]

anisotropic top-down model with 5+1d field theory can violate the bound
[Polchinski, Silverstein ’12]

spatial anisotropies important in early stages of heavy ion collisions
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Anisotropic axion-dilaton gravity [Mateos, Trancanelli ’11]

Boundary

Bulk

S = SN=4

+
1

8π2

∫
θ(z)Tr F ∧ F

with θ(z) = 2πχ/gs = 2πnD7 z

Sbulk =
1

2κ2

∫ √
−g
(
R+ 12

−
(
∂φ
)2

2
−

e2φ(∂χ)2

2

)

with χ = az

〈Tµν〉 = diag
(
ε,P⊥,P⊥,Pz

)
with conformal anomaly 〈Tµ

µ 〉 ∝ a4
ds2 =

e−
φ
2

u2

(
−FBdt2 +

du2

F
+ dx2 + dy2 +Hdz2

)

s =
(ε+ P⊥)

T
s =

Ah

4GV3
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Anisotropic axion-dilaton gravity [Mateos, Trancanelli ’11]
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Thermodynamics at infinite coupling
[Mateos, Trancanelli ’11; Gynther, Rebhan, DS ’12]

Note: anisotropic system is in thermodynamic equilibrium

thermodynamically unstable (wrt. redistribution of D7 branes):(∂Pz

∂Lz

)
T ,N

> 0 ⇒
( ∂Pz

∂(1/a)

)
T ,N

> 0

1 2 3 4
a0�a

0.96

0.97

0.98

0.99

1.01

Pz �P0

T = 0.45 a0

T = 0.5 a0

T = 0.6 a0

T = 0.7 a0

0.0 0.5 1.0 1.5 2.0 2.5
a�a00.0

0.2

0.4

0.6

0.8

1.0

1.2
T�a0

(thermodynamics at zero coupling→ [Gynther, Rebhan, DS ’12])
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Shear viscosities

3 scalars: ψ⊥ = hx
y , ψL = hy

z and ψL̃ = hz
y (massive!)

effective action

S(2)
eff =

1
16πG

∫
d4K

(2π)4 du
(
ψ′nC1

n(K ,u)ψ′n + ψnC0
n(K ,u)ψn

)

retarded correlator

GR
n (K ) = − lim

u→0

Πn(K ,u)

ψn(K ,u)
with Πn =

∂L(2)

∂(∂uψn)
∝ ∂uψn

retarded correlator ↔ infalling boundary conditions at horizon
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Shear viscosities

Membrane paradigm [Iqbal, Liu ’08]

generic transport coefficient of
boundary theory

⇒ geometric quantities evaluated at
horizon

at the horizon

ψa(t ,u,x) = ψa(v ,x) where dv = dt −
√

guu

−gtt
du

shear viscosity

ηn =
Πn(K ,uh)

iωψn(K ,uh)
with Πn(uh,q) ∝ iωψn
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Shear viscosities [Rebhan, DS ’11]

In the anisotropic plasma we find

purely transverse ψ⊥ = hx
y

ηx x
y y = η⊥ =

s
4π

longitudinal ψL = hx
z

ηx x
z z = ηL = η⊥

gxx (uh)

gzz(uh)
=

s
4πH(uh)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

a �T

4
Π

Η
�
s

Η
¦

ΗL

Violation of the viscosity
bound!

3rd shear viscosity ψL̃ = hz
x

ηz z
x x = η⊥

gzz(uh)

gxx (uh)
=

sH(uh)

4π
>

s
4π

3 is 1 too much in boundary theory⇒ symmetry
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From the horizon to the boundary

We find that

∂u
(
η⊥
)

= ∂u
(
ηL
)

= 0

but

∂u
(
ηL̃

)
∝ a2

⇒ ηL̃ = ηL̃(u)

→ only 2 shear viscosities in
boundary theory

Furthermore

ηL̃(u) = ηx x
z z(u) =

(
gzz(u)

gxx (u)

)2

η z z
x x =

(
gzz(u)

gxx (u)

)2

ηL
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Conclusion
Results

model of anisotropic plasma

that is in thermal equilibrium (anisotropy is not dynamical)
that has a rich phase diagram at infinite and zero coupling
that is very different from hard anisotropic loop effective theory

different shear viscosities

longitudinal shear viscosity breaks the holographic bound

Outlook
phenomenological implications of
the longitudinal shear viscosity

impact on elliptic flow seems to be
very small

studying small but finite coupling

compare transport coefficients to
strong coupling results

 0.02

 0.04

 0.06

 0.08

 0.1

-4 -2  0  2  4

h
+

/-
 v

2

ηp

 PHOBOS v2 15-25% central

 (η/s)L = 0 

 (η/s)L = 0.02 

 (η/s)L = 0.04 

 (η/s)L = 0.08 

[Schenke, private communication]
Larger

Thank you!
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The issue of instabilities [Mateos, Trancanelli ’11; Rebhan, DS ’11]
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Thermodynamics at zero coupling [Gynther, Rebhan, DS ’12]

theory of free photons coupled to anisotropic CS charge

→ no tachyonic modes for spacelike gradients of θ
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