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Sources of fluctuations
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 Initial-state fluctuations
 Quantum fluctuations of the nucleon distribution

 Quantum fluctuations of fast moving color charges

 Quantum fluctuations of the gauge field

 Hydrodynamic fluctuations

 Fluctuations during hadronization

 Jet-medium interactions
 Mach cones?

 Initial-state fluctuations give rise to final correlations at the largest 
rapidity difference !
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Initial state 
fluctuations
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Rapidity correlations
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Initial separation: Δx0 = Δ τ 0 sinhη( ) ≈ t0Δη → Δη ≈ Δx0
t0

Hydro propagation in longitudinally expanding medium increases separation by:

Δxs = 2vs ln τ f /τ 0( )

 

Δx0  R /γ
Δx0 1/α sQs

Δx0 1/T

Contracted nuclei

CGC coherence length

Thermal noise correlation length

Relevant length scales for correlated fluctuations:

Wednesday, September 26, 12



Space-time picture
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Lappi, PLB 643 (2006) 11
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Color charge fluctuations
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Quantum fluctuations in the positions of the colliding nucleons give rise to a
position dependent density of valence partons and other hard partons: μ2(x).

For given μ, color charges of the partons combine in a random walk in SU(3).
This generates an approximately Gaussian distribution of color charges ρa(x).

P ρ[ ]∝ exp − 1
2g2µ2 d 2xρa (x)ρa (x)∫

⎛
⎝⎜

⎞
⎠⎟

Neglected: transverse correlations among color charges, x-dependence of μ,
confinement related effects, etc.

Wednesday, September 26, 12



Energy density fluctuations
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Quantity to calculate:

Energy density deposited by two colliding sheets of CGC: 

1

2
ε

CGC field correlator (light-cone gauge):
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〈ε〉

8

Decompose p-quadrupole tensor:

G(0) diverges logarithmically; divergence can be regulated by “triumvirate” coupling:

where

Average energy density: Lappi, PLB 643 (2006) 11

Note: Logarithmic divergence exists only for τ = 0. UV components of glasma field
get out of phase for τ > 0 and render ε finite [Fries, Kapusta & Li; Lappi].
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〈ε(x)ε(y)〉
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Products of <AAAA> correlators of the CGC fields in the individual nuclei.
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Gaussian approximation
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Exact analytical evaluation of <AAAA> correlators in the CGC model is extremely
complicated. In LC gauge, it requires evaluation of gauge links between x and y 
through (−∞) along the light-cone. Alternatively, one can use link representation:

with

Generates infinite series of terms <ρn>. 

For techniques for an effective evaluation of <U4> correlators in the Gaussian 
approximation using color dipoles, see: Marquet & Weigert [NPA 843 (2010) 68]. 

General discussion for the validity of the Gaussian approximation:
Iancu & Triantafyllapoulos, arXiv:1112.1104 [hep-ph].
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Abelian Gaussian limit
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To obtain a simple result, we make the Gaussian approximation for the <AAAA>
correlator, which assumes Gaussian charge correlations and abelian dominance.
Rationale: ε is dominated by high-field regions, where fields are approximately
abelian.

Many lines of algebra later  ..... one finds a simple result:

K(z) = D(z)2 + E(z)2 + F(z)2

ε(x)ε(y) − ε(x) ε(y) = g
4

2
N 2 (N 2 −1)D(0)2K(x − y)+ 7g

4

16
N 2 (N 2 −1)K(x − y)2
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Δε/ε is large

12

Parameter choices:
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Alternative models
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G(z) = G0φ(z
2 /ξ 2 ) with G0 = 4

9 πµ
2, 1 /ξ 2 = 1

9 Nπ (gµ)
2

φMV(u) = (1− e
−u ) /u

φ1(u) = e
−u/2

φ2 (u) = 1+ u
2( )−1
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Implementation 1
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S. Moreland (OSU/Duke), Z. Qiu( (OSU), Talk at QM2012

Map Gaussian Δε, <ε> on positive definite negative binomial distribution
with same mean and standard deviation, generate random sample:
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ε(x,y) in central event
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No influence on εn ?

16

Wednesday, September 26, 12



Implementation 2
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Numerical implementation of
color field fluctuations:
Schenke, Tribedy & Venugopalan,
arXiv:1202.6646, 1206.6805

Color field fluctuations
in the colliding nuclei

Wednesday, September 26, 12



Flow analysis and LHC data
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Schenke, Tribedy, Venugopalan (QM 2012):

Nice agreement with Pb+Pb data for η/s = 0.2 in vn(pT) and vn(b) 

Inconsistency with Moreland et al: εn are influenced by finer gluonic fluctuations!

Wednesday, September 26, 12



Counting hot/cold spots
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 C
(k )(n1,...,nk ) = (−1)

k cos n1Ψ1 +nkΨk( ) ψm = event plane angle

G. Qin & BM, PRC 85 (2012) 061901
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Hydrodynamic
fluctuations
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Molecular Dynamics

Lubrication Equation

Stochastic Lubrication Equation
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Particle number fluctuations
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(ΔN)2 ~ N ~ ρV  ?
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Particle number fluctuations
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(ΔN)2 ~ N ~ ρV  ?

λf

(ΔN)2  ~ ρλf
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Particle number fluctuations
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(ΔN)2 ~ N ~ ρV  ?

λf

(ΔN)2  ~ ρλf

(Δp)2  ~ ρλf p ~ η
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Relativistic Dissipative Fluid Dynamics

In the Landau-Lifshitz approach uμ is the velocity of energy transport.

ΔT µν =η Δµuν + Δνuµ( ) + 2
3η −ζ( )H µν ∂ρu

ρ

ΔJB
µ = χ nBT /w( )2 Δµ µB /T( ) sµ = suµ − µB

T
ΔJB

µ

 
∂µ s

µ = η
2T

∂i u
j + ∂ j u

i − 2
3δ

ij ∂k u
k( )2 + ζ

T
∂k u

k( )2 + χ
T 2 ∂kT +T uk( )2 > 0
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Landau’s theory of hydrodynamic fluctuations

Stochastic source

Svis
µν x( )Svisαβ y( ) = 2T η H µαH νβ + H µβH να( ) + ζ − 2

3η( )H µνH αβ⎡⎣ ⎤⎦δ
4 x − y( )

Sheat
µν x( )Sheatαβ y( ) = 2χT 2 H µαuνuβ + H νβuµuα + H µβuνuα + H ναuµuβ⎡⎣ ⎤⎦δ

4 x − y( )

Svis
µν x( )Sheatαβ y( ) = 0

Fluctuation - dissipation theorem:   Sµν is related to ΔTµνText

N. Salie, R. Wuffert, and W. Zimdahl, J. Phys. A 16, 3533 (1983).
E. Calzetta, Class. Quant. Grav. 15, 653 (1998).
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Solution procedure

Choose initial conditions

Solve hydro equations for arbitrary sources Sμν

Calculate correlations / fluctuations of observables

Average over stochastic sources

Apply thermal freeze-out smearing (Cooper-Frye)

∂µTideal
µν + ∂µΔTvis

µν = −∂µS
µν
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Bjorken scaling hydrodynamics

τ = t 2 − z2 , ξ = tanh−1(z / t), t = τ coshξ, z = τ sinhξ

u0 = cosh ξ +ω( ), u3 = sinh ξ +ω( )

ΔTvis
µν = − 4

3η +ς( )(∂⋅u)hµν Sµν = w(τ ) f (ξ,τ )hµν

f (ξ,τ ) f (ξ ',τ ') = 2T (τ )
Aτw(τ )2

4
3η(τ )+ς (τ )[ ]δ (τ −τ ')δ (ξ −ξ ')

T = T0 (τ )+δT (ξ,τ )
P = P0 (τ )+δP(ξ,τ )
ε = ε0 (τ )+δε(ξ,τ )

δε = cV (T )δT
δP = s(T )δT
δ s = δε /T ⇒ ρ = δ s / s

w = ε + P

Bjorken
variables:

Longitudinal flow fluctuations

Density fluctuations

Boost invariant background suggests FT:
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Sound horizon
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sourceξ1 ξ2

source ξ1 =ξ2
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Gaussian smeared Gsing

ξ1 - ξ2Sound horizon: 

Equations for small fluctuations can be solved analytically: Green’s functions Gω/ρ(k;τ,τ’)
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Rapidity fluctuations
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Viscosity and  thermal
freeze-out smearing

Freeze-out with Cooper-Frye:
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Rapidity fluctuations
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τ0 = 0.16 fm/c

T0 = 600 MeV

τf = 10 fm/c

Tf = 150 MeV

Viscosity and  thermal
freeze-out smearing

Freeze-out with Cooper-Frye:
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Summary
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 Initial state fluctuations:
 Approximate analytical form of the energy density fluctuations has 

been derived in a CGC inspired model.
 The result is rather insensitive to details of gluon distribution in 

the colliding nuclei.
 Energy density fluctuations are large: Δε/ε ~ 0.7 at Δx = 0

 Hydrodynamic fluctuations:
 Can be model independently predicted given a hydro scenario.
 Encode important information on transport coefficients and speed 

of sound.
 Can generate rather long range rapidity correlations (Δη ~ 3-4).
 Transverse flow under study by Stephanov et al. 
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