Role of mixing between quarkonium and tetraquark on QCD phase diagram

Tamal K Mukherjee

Institute of High Energy Physics, CAS.

Collaborators: Mei Huang, Qi-Shu yan

- Motivation
- A linear sigma model for scalar meson below 2 GeV
- A simple model for quarkonia and tetraquark mixing
- Outlook

- Chiral symmetry is an important ingredient for scalar meson spectrum.
- Lowest scalar meson σ is believed to be the Higgs boson of QCD.
- Chiral phase transition \rightarrow chiral partner become degenerate.
- Scalars are probe of QCD vacuum
- To explain the mass spectrum light scalar meson \rightarrow mixing between quarkonia and tetraquark is necessary.
- Effective model study indicates interesting implication for chiral symmetry restoration.

< 回 ト く ヨ ト く ヨ ト

- identification of the scalar mesons is a long standing puzzle.
- the problem originates from their large decay widths
- one expects non-q
 q scalar objects like glueballs and multiquark states in the mass range below 1800 MeV.
- relevant symmetry: $U(3)_L \times U(3)_R \rightarrow SU(3)_L \times SU(3)_R \times U(1)_V \times U(1)_A$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Iso-Scalar Meson

Fig. 7. Experimental light flavoured isoscalar meson spectrum. Data are from [1]. Mean values of resonance positions are indicated by thick lines, less established resonances are represented by medium thick lines, 'further states' by very thin lines.

3

(a)

Unusual Spectroscopy

Vector Mesons:

- I = 1: m[$\rho(776)$] $\approx 776 MeV$ $n\bar{n}$
- I = 0: m[ω (783)] \approx 783*MeV* $n\bar{n}$
- $I = \frac{1}{2}$: m[K^{*}(892)] $\approx 892 MeV$ ns
- $I = \overline{0}$: m[$\phi(1020)$] $\approx 1020 MeV$ ss

< 回 ト く ヨ ト く ヨ ト

Unusual Spectroscopy

Vector Mesons: I = 1: $m[\rho(776)] \approx 776 MeV$ $n\bar{n}$ I = 0: $m[\omega(783)] \approx 783 MeV$ $n\bar{n}$ $I = \frac{1}{2}$: $m[K^*(892)] \approx 892 MeV$ $n\bar{s}$ I = 0: $m[\phi(1020)] \approx 1020 MeV$ $s\bar{s}$ Scalar Mesons:

$$I = 0: \quad m[f_0(600)] \approx 500 MeV$$

$$I = \frac{1}{2}$$
: m[κ] $\approx 800 MeV$

$$I = \overline{0}: \quad m[f_0(980)] \approx 980 MeV$$

$$\mathsf{I}=1:\quad\mathsf{m}[\mathit{f}_0(980)]\approx980\mathit{MeV}$$

$$\sqrt{\frac{1}{2}}(\bar{u}u + \bar{d}d)$$

$$\bar{u}s, \bar{s}u, \bar{d}s, \bar{s}d$$

$$\bar{s}s$$

$$\bar{u}d, \bar{d}u, \sqrt{\frac{1}{2}}(\bar{u}u - \bar{d}d)$$

Unusual Spectroscopy

Vector M	esons:	
I = 1:	${ m m}[ho(776)]pprox 776 MeV$	nīn
I = 0:	m[ω (783)] $pprox$ 783 <i>MeV</i>	nīn
$I = \frac{1}{2}$:	$m[K^{\star}(892)] \approx 892 MeV$	ns
$I = \overline{0}$:	$m[\phi(1020)] \approx 1020 MeV$	<u>s</u>
Scalar Me	esons:	_
I = 0:	$m[f_0(600)] \approx 500 MeV$	$\sqrt{\frac{1}{2}}(\bar{u}u+\bar{d}d)$
$I = \frac{1}{2}$:	${\sf m}[\kappa]pprox$ 800 MeV	ūs, su, ds, sd
$I = \overline{0}$:	$m[f_0(980)] \approx 980 MeV$	<u>s</u> s
I = 1:	$m[f_0(980)] \approx 980 MeV$	$\bar{u}d, \bar{d}u, \sqrt{\frac{1}{2}}(\bar{u}u - \bar{d}d)$

Light Scalars are tetraquark state: Jaffe (Phys. Rev. D 15 (1977)) The States above consecutively can be represented as: $nn\overline{nn}$, $nn\overline{ns}$, $ns\overline{ns}$, $ns\overline{ns}$

(a)

Sigma-mesonic mode

Sigma meson \rightarrow Quantum fluctuation of $\bar{\psi}\psi$.

Higgs Particle in QCD \rightarrow Existence in real world is still unclear.

$$f_0(600)$$
or $\sigma \rightarrow$ Mass (400-1200) MeV
 \rightarrow Full Width (600-1000) MeV

Composition: quark bilinear state or tetraquark state?

Review of Iso-Scalar Meson

Glueball

$$r_0 = 0.5 \text{fm}$$

extrapolation to $a = 0$ gives:
 $m = 1611 \pm 30 \pm 160 \text{MeV}.$

イロト イヨト イヨト イヨト

æ

Model Prediction

Decomposition of scalar isoscalar states into different components.

Ref.: Eur. Phys. J. C21, 531, 2001, Eur. Phys. J. C21, 531, 2001, Phys. Rev. D74, 054030, hep-ph/0603018

Figure Ref.: Phys. Rept. 454:1202,2007.

・ロト ・ 同ト ・ ヨト ・ ヨト

Consideration:

• Scalar condensates are allowed by the QCD vaccum.

3

(a)

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

< 回 > < 三 > < 三 >

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Three types of fields:

• Two chiral effective nonet fields (Φ , Φ') describing the two quark and four quark states.

・ 同 ト ・ ヨ ト ・ ヨ ト

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Three types of fields:

- Two chiral effective nonet fields (Φ , Φ') describing the two quark and four quark states.
- Spurion field (Y) representing pure ground gluonbound state.

Consideration:

- Scalar condensates are allowed by the QCD vaccum.
- Mesons having identical external quantum numbers can mix even if they have different internal flavour structures.

Three types of fields:

- Two chiral effective nonet fields (Φ , Φ') describing the two quark and four quark states.
- Spurion field (Y) representing pure ground gluonbound state.

• Basic Lagrangian: $\mathcal{L} = \text{Tr} (\partial_{\mu} \Phi \ \partial^{\mu} \Phi^{\dagger}) + \text{Tr} (\partial_{\mu} \Phi' \ \partial^{\mu} \Phi^{\dagger'}) + \partial_{\mu} Y \partial^{\mu} Y^{\star} - V_0 - V_{SB}$

(人間) システン イラン

Some Remarks

- Tetraquark field:
 - a) molecular type :

$$M^{b}{}_{a} = (q_{bA})^{\dagger}\gamma_{4} \frac{1+\gamma_{5}}{2} q_{aA}; \Phi^{b}{}_{a} = \epsilon_{acd} \epsilon^{bef} (M^{\dagger})^{c}{}_{e} (M^{\dagger})^{d}{}_{f}$$

b) scalar di-quark + anti-diquark :

$$\phi_i = \sqrt{\frac{1}{2}} \epsilon_{ijk} q^{\dagger}{}_j C \gamma^5 q_k; \Phi_{ij} = \phi^{\dagger}{}_i \phi_j$$

At the symmetry level we are working: we are not interested in the underlying quark structure.

- 4 回 ト - 4 回 ト

Some Remarks

- Tetraquark field:
 - a) molecular type :

$$M^{b}{}_{a} = (q_{bA})^{\dagger}\gamma_{4}rac{1+\gamma_{5}}{2}q_{aA}; \Phi^{b}{}_{a} = \epsilon_{acd}\epsilon^{bef}(M^{\dagger})^{c}{}_{e}(M^{\dagger})^{d}{}_{f}$$

b) scalar di-quark + anti-diquark :

$$\phi_i = \sqrt{\frac{1}{2}} \epsilon_{ijk} q^{\dagger}{}_j C \gamma^5 q_k; \Phi_{ij} = \phi^{\dagger}{}_i \phi_j$$

At the symmetry level we are working: we are not interested in the underlying quark structure.

• Glueball field:

We interpret the spurion field as effective glueball field. To accommodate realistic glueball field it is widely used practice to introduce a flavor singlet complex field to the linear/non-linear sigma model. [Phys Rev. D 21, 3393 (1980), Nucl. Phys. B175, 477 (1980), Prog. Theor. Phys. 66, 1789 (1981), Phys. Rev. D 80, 014014 (2009)].

Lagrangian

$$\mathcal{L}_{\mathcal{S}} = Tr(\partial_{\mu}\Phi\partial^{\mu}\Phi^{\dagger}) + Tr(\partial_{\mu}\Phi'\partial^{\mu}\Phi^{\dagger'}) + \partial_{\mu}Y\partial^{\mu}Y^{\star} - m_{\Phi}^{2}Tr(\Phi^{\dagger}\Phi) - m_{\Phi'}^{2}Tr(\Phi^{\dagger'}\Phi') - m_{Y}^{2}YY^{\star} - \lambda_{1}Tr(\Phi^{\dagger}\Phi\Phi^{\dagger}\Phi) - \lambda_{1}'Tr(\Phi^{\dagger'}\Phi'\Phi^{\dagger'}\Phi') - \lambda_{2}Tr(\Phi^{\dagger}\Phi\Phi^{\dagger'}\Phi') - \lambda_{Y}(YY^{\star})^{2} - [\lambda_{3}\epsilon_{abc}\epsilon^{def}\Phi_{d}^{a}\Phi_{e}^{b}\Phi_{f}^{\ \prime c} + h.c.] + [kYDet(\Phi) + h.c.]$$

(1)

$$\mathcal{L}_{SB} = [Tr(B.\Phi) + h.c.] + [Tr(B'.\Phi') + h.c.] + (D.Y + h.c.) - [\lambda_m Tr(\Phi\Phi^{\dagger\prime}) + h.c.]$$

(2)

Mixing and Parameter Fixing:

 $\begin{array}{ll} \text{Isospin} & I = 1 & I = \frac{1}{2} & I = 0 \\ \text{PseudoScalars(P=-1)} & \{\pi, \pi'\} & \{\mathsf{K}, \, \mathsf{K}'\}, \, \{\mathsf{K}^*, \, \mathsf{K}^{*\prime}\} & \{\eta_1, \eta_2, \eta_3, \eta_4, \eta_5 \ \} \\ \text{Scalars(P=1)} & \{a, a' \}, & \{\kappa, \kappa'\}, \, \{\kappa^*, \, \kappa^{*\prime}\}, & \{f_1, f_2, f_3, f_4, f_5\} \end{array}$

• For I = 1/2, 1 states: Two and four quarks states mixed with each other.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Mixing and Parameter Fixing:

 $\begin{array}{ll} \text{Isospin} & I = 1 & I = \frac{1}{2} & I = 0 \\ \text{PseudoScalars(P=-1)} & \{\pi, \pi'\} & \{\mathsf{K}, \, \mathsf{K}'\}, \, \{\mathsf{K}^*, \, \mathsf{K}^{*\prime}\} & \{\eta_1, \eta_2, \eta_3, \eta_4, \eta_5 \ \} \\ \text{Scalars(P=1)} & \{a, a' \ \}, & \{\kappa, \kappa'\}, \, \{\kappa^*, \, \kappa^{*\prime}\}, & \{f_1, f_2, f_3, f_4, f_5\} \end{array}$

- For I = 1/2, 1 states: Two and four quarks states mixed with each other.
- For I = 0 scalar and pseudoscalar states two, four quarks as well as glueball states mixed with each other.

< 個 → < 注 → < 注 → □ □

Mixing and Parameter Fixing:

 $\begin{array}{ll} \text{Isospin} & I = 1 & I = \frac{1}{2} & I = 0 \\ \text{PseudoScalars(P=-1)} & \{\pi, \pi'\} & \{\mathsf{K}, \, \mathsf{K}'\}, \, \{\mathsf{K}^*, \mathsf{K}^{*\prime}\} & \{\eta_1, \eta_2, \eta_3, \eta_4, \eta_5 \ \} \\ \text{Scalars(P=1)} & \{a, a' \}, & \{\kappa, \kappa'\}, \, \{\kappa^*, \, \kappa^{*\prime}\}, & \{f_1, f_2, f_3, f_4, f_5\} \end{array}$

- For I = 1/2, 1 states: Two and four quarks states mixed with each other.
- For I = 0 scalar and pseudoscalar states two, four quarks as well as glueball states mixed with each other.
- Input Parameters:

Mixing angles for π and K within the range $\{-\frac{\pi}{4},\frac{\pi}{4}\}$ along with their decay constants.

Two condensates (below 2 GeV)

• Symmetry Breaking Parameters:

$$\frac{B_s}{B_{u,d}} = \frac{m_s}{m_{u,d}} = \frac{B_s'}{B_{u,d}'}$$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Parameter Fixing contd..

- Vacuum Stability Conditions: $\frac{\partial V}{\partial \langle v_i \rangle} = 0.$
- Physical Input Mass: $(R^{-1})M^2_{bare}(R) = M^2_{phys}$

Parameter Fixing contd..

- Vacuum Stability Conditions: $\frac{\partial V}{\partial \langle v_i \rangle} = 0.$
- Physical Input Mass: $(R^{-1})M^2_{bare}(R) = M^2_{phys}$
- Parameters related to Glueball sector:

$$Tr[M_{\eta}^{2}]_{Model} = Tr[M_{\eta}^{2}]_{Exp} ,$$

$$Det[M_{\eta}^{2}]_{Model} = Det[M_{\eta}^{2}]_{Exp} .$$

(3) (4) Result

Bounded potential constraint $\lambda_Y > 0$

Dependence of λ_Y and scalar meson masses on the scanning parameter $m_Y{}^2$

Result

π' Mass (GeV)	Field	Our Value (GeV)	quarkonia (%)	tetraquark (%)	Experimental Value (GeV)
	а	1.055	38.14	61.8 6	0.98
	a'	1.417	61.86	38.14	1.47
1.2	κ	1.13	62.14	37.86	0.80
	κ'	1.186	37.86	62.14	1.43

Table: Mass spectra and components for the triplet and doublet sector based on our fit are demonstrated where the best value of $m_{\pi'}$ is found to be $m_{\pi'} = 1.2$ GeV.

π' Mass (GeV)	$J^{PC} = 0^{-+}$	Our Value (GeV)	quarkonia (%)	tetraquark (%)	glueball (%)	Experimental Value (GeV)
1.2	η_5	1.858	0.037	0.001	99.962	1.756 ± 0.009
	η_4	1.380	75.803	24.167	0.03	1.476 ± 0.004
	η_3	1.291	26.700	73.294	0.006	1.294 ± 0.004
	η_2	0.907	15.852	84.145	0.003	0.95766 ± 0.00024
	η_1	0.595	81.607	18.393	0.0	0.547853 ± 0.000024

Table: Mass spectra and components for the pseudo-scalar mesons based on our fit are shown where the best value of $m_{\pi'}$ is found to be $m_{\pi'} = 1.2$ GeV.

π' Mass (GeV)	$J^{PC} = 0^{++}$	Our Value (GeV)	quarkonia (%)	tetraquark (%)	glueball (%)	Experimental Value (GeV)
1.2	f_{5}^{0}	2.09	0.01	0.0	99.99	-
	f_4^0	1.487	77.469	22.53	0.001	1.505 ± 0.006
	f_{3}^{0}	1.347	22.177	77.82	0.003	1.2-1.5
	f_2^0	1.124	21.561	78.439	0.0	0.980 ± 0.010
	f_1^{0}	0.274	78.784	21.211	0.005	0.4-1.2

Table: Mass spectra and components for the scalar mesons based on our fit are shown where the best value of $m_{\pi'}$ is found to be $m_{\pi'} = 1.2$ GeV.

3

Effect of Mixing

- light tetraquark meson becomes degenerate with pions after chiral symmetry is restored.
- after transition chiral condensate approaches to zero but tetraquark condensate tends to rise. A. Heinz et al., Phys.Rev. D79 037502

Alternate Symmetry breaking

Fermion-Boson Lagrangian

- Basic degrees of freedom: quarks and diquarks.
- Lagrangian:

$$\mathcal{L} = ar{q}(i\partial \!\!\!/ - m_0)q + rac{G_\sigma}{2}[(ar{q}q)^2 + (ar{q}i\gamma_5ar{ au}q)^2] + (\partial_\mu D^\dagger \partial^\mu D - M_s^2 D^\dagger D) + rac{G_D}{2}(D^\dagger D)^2 + G_l(ar{q}q)(D^\dagger D)$$

• To construct baryons it is necessary to include axial-vector isovector diquark field with axial vector coupling to quark.

But we don't account for baryons in our present study.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fermion-Boson Lagrangian

• Effective vacuum Lagrangian (after bosonization):

$$\mathcal{L} = -i \mathrm{Tr} ln S_q^{-1} + rac{i}{2} \mathrm{Tr} ln \Delta_D^{-1} - rac{\sigma^2}{2G_\sigma} - rac{\pi^2}{2G_\sigma} - rac{\chi^2}{2G_D} - G_I rac{\sigma\chi}{G_\sigma G_D}$$

- We assume apart from chiral condensate, tetraquark condensate $< D^{\dagger}D >$ is also present in the vacuum.
- Here, because of mixing, constitutent masses of quark and diquark depend on both the chiral and tetraquark condensates:

$$m_q = m_0 - \sigma - \frac{G_I}{G_D} \chi$$
$$M_D^2 = M_S^2 - \chi - \frac{G_I}{G_\sigma} \sigma$$

(Note: In our notation, $\sigma = G_{\sigma} < \bar{q}q >$ and $\chi = G_D < D^{\dagger}D >$)

|▲|||●| ▲ 三 ▶ | ▲ 三 ▶

Input Parameters

$$=(0.251)^3 GeV^3$$
, $f_{\pi}=92.4 MeV$, $m_{\pi}=0.14 GeV$, $f_0(600)=0.4-1.2 GeV$, $f_0(1370)=1.2-1.5 GeV$

- GMOR relation: $G_{\sigma} = \frac{m_0 m_q}{m_{\pi}^2 f_{\pi}^2}$
- Two scenarios possible:

 $f_0(600)$ is a conventional meson whereas $f_0(1370)$ is a tetraquark meson and vice versa.

• We assume: $\chi = \frac{\sigma}{n}$ where n is a positive integer.

Tamal K Mukherjee (Institute of High EnergyRole of mixing between quarkonium and tetra

21 / 25

$$\frac{\partial\Omega}{\partial\chi} = \frac{\chi}{G_D} + \frac{G_l}{G_\sigma G_D} \sigma - 12 \int \frac{p^2 dp}{2\pi^2} \frac{\partial E_f}{\partial\chi} \left[1 - \frac{1}{\exp[\beta(E_f - \mu)] + 1} - \frac{1}{\exp[\beta(E_f + \mu)] + 1}\right] - \frac{1}{2} \int \frac{p^2 dp}{2\pi^2} \frac{\partial E_b}{\partial\chi} \left[1 + \frac{1}{\exp[\beta(E_b - \mu)] - 1} + \frac{1}{\exp[\beta(E_b + \mu)] - 1}\right]$$

▲□▶
▲□▶
■▶
■▶
■▶
■▶

Finite density results.

Note: In all these results we have assumed $f_0(600)$ is a conventional $\bar{q}q$ meson and $f_0(1370)$ is a tetraquark meson. The values of the parameters: $m_0 = 5.5$ MeV, $M_s = 0$ MeV, $G_\sigma = 9.26$ GeV⁻² $G_D = 28.72$, $G_I = 11.04$ GeV⁻¹.

Outlook

- To understand the vacuum phenomenology we need to incorporate scale anomaly
- we need to couple tetraquark to glueball in our framework
- need to analyze the various decay widths of the mesons.
- To study the effect of mixing between quarkonium and tetraquark on the QCD phase diagram within our model we need to analyze the allowed parameter space to study the consequences
- need to incorporate baryonic degrees of freedom.
- need to study the medium behaviour of the mesons under chiral phase transition in the context of mixing between quarkonium and tetraquark.

THANK YOU!

Tamal K Mukherjee (Institute of High EnergyRole of mixing between quarkonium and tetra

э

イロト イポト イヨト イヨト