Comparing Lattice Results to Measurements from RHICILHC

Scott Pratt, Michigan State University

Richard Feymann

If a cat were to disappear in Pasadena and at the same time appear in Erice, that would be an example of global conservation of cats. This is not the way cats are conserved:
Cats or charge or baryons are conserved in a much more continuous way If any of these quantifies begin to disappear in a region, then they begin to appear in a neighboring region Consequently we can dentify a flow of charge out of a region with the disappearance of charge inside the region. This identification of the olvergence of a flux with the time rate of change of a charge density is called a
प人qal conservatonlaw

A local conservation law mplies that the total charge is conserved globally but the reverse does not hold. However, relativistically it is clear that non local global conservation laws cannot exist, since to a moving observer the cat will appear in Erice before it disappears in Pasadena.

Charge Balance Functions

Who is his partner?

For each charge + Q there is extra balancing charge - Q.

$$
B(\Delta y)=\frac{N+(\Delta y)-N_{++}(\Delta y)}{N_{+}}
$$

Two waves of quark production

up or down quarks

isentropic expansion

thermalization
$\tau(\mathrm{fm} / \mathrm{c})$

Balance
 Function is sensitive to when charge is created

S. Bass, p Danielewicz \& S.P., PRL: 2000
 diffusive
breakup temp.

Blast Wave

Parameters:
$T, \varepsilon_{1} V_{1 \times}, V_{1 y,} O_{\eta,} \alpha_{\phi}$

Relativespread ofanissiof

T and v fixed by
spectra (STAR fits)
Canonical methods
enforce conservation

BW vs. STAR

$B F$ vs Δn

STAR's Blast Wave model (Lisa \& Retierre) + Local Charge Conservation also see PBozek, PLB(2005)

Narrowing $B(\Delta n)$ suggests delayed hadronization (Bass, Danielewicz and SP, PRL 2001)
Narrowing $B(\Delta \phi)$ signals radial flow
(Bozek, PLB 2005)

Balance function \& "parity" Observable

$$
\begin{aligned}
& \gamma=\left\langle\cos \left(\phi_{1}+\phi_{2}\right)\right\rangle \\
& \gamma_{p}=\gamma_{\text {opp,sign }}-\gamma_{\text {samesign }}
\end{aligned}
$$

$\gamma_{p}=\frac{2}{M^{2}} d \phi d \Delta \phi \frac{d M}{d \phi} \phi(\phi \cdot \Delta \phi) \cos (2 \phi+\Delta \phi)$

Use STAR's BW fit

Balance function \& "parity" Observable

$$
\gamma=\left\langle\cos \left(\phi_{1}+\phi_{2}\right)\right\rangle=\langle\cos (2 \phi+\Delta \phi)\rangle
$$

$=\langle\cos (2 \phi)\rangle\langle\cos (\Delta \phi)\rangle$
$+\langle\cos (2 \phi) \cos (\Delta \phi)\rangle-\langle\cos (2 \phi)\rangle\langle\cos (\Delta \phi)\rangle$
$-\langle\sin (2 \phi) \sin (\Delta \phi)\rangle$
$\mathrm{V}_{\mathrm{p}} \approx \mathrm{V}_{2} / \mathrm{M}$ inevitable for low viscosity liquid \& local charge conservation LII

Lattice uses charge correlations

$$
\chi_{a b}=\left\langle Q_{a} Q_{b}\right\rangle / V / l a \mathrm{a}, \mathrm{~b}=\mathrm{uds}
$$

Parton gas:

$$
\chi_{a b}^{\mathrm{QGP}}=\left(n_{0}+n_{n}\right) \delta_{a b}
$$

Hadron gas

$$
\begin{aligned}
& \text { off-diagonal elements }
\end{aligned}
$$

Lattice results scaled by entropy

 courtesy of Claucia Ratii

Transformation not
perfectly Sharp
Nearit.
up/down increase, strangeness slightly
decreases

Problems with Comparing Experiment to Lattice

1. Lattice = Grand Canonical (Particle Bath) Experiment - Canonical (net charge - 0)
2. Charge created at hadronization
3. One measures hadrons - not uds
4. One measures momenta, not positions

1. Just before hadronization

$$
\begin{aligned}
& g_{u u}(\Delta \eta)=\left\langle Q_{u}(\eta) Q_{u}(\eta+\Delta \eta)\right\rangle \\
& \int d \Delta \eta \delta_{a b}(\Delta \eta)=0 \\
& \delta_{u d}=\delta_{u s}=g_{d}=0
\end{aligned}
$$

QOCP

onlyextra parameter

Fromlattice!

2. Just after hadronization

$$
\begin{aligned}
& \delta_{a b}(\Delta \eta)=\chi_{a b}^{(H A D)} \delta(\Delta \eta)
\end{aligned}
$$

$$
\begin{aligned}
& \int d \Delta \eta \delta_{0}(\Delta \eta)=0 \\
& g+\Delta \eta) \text { can't change suddenly } \\
& \text { except at } \Delta \eta=0
\end{aligned}
$$

2. Just after hadronization Summarizing...

$$
\begin{aligned}
& \chi^{2}(0 G P)=2 n_{a} \delta_{a}
\end{aligned}
$$

3. But, we measure G_{aj} not gabll II.

$$
\alpha \beta=\rho p, K \quad a j-1, o \rho
$$

$$
\begin{aligned}
& \left.C_{\alpha \beta}(\Delta \eta)=n_{\alpha} n n_{\beta} n^{1} n^{2}\right)
\end{aligned}
$$

Generalized Balance Function (aside from factor of $\left\langle n_{\beta}\right\rangle$)

Analogous problem...

Given $\delta \rho_{a}$ and n_{0} find Ona 2

Solution assigh chemical potential

$$
\begin{aligned}
& \delta n_{\alpha=1}=(\text { ehad }) \\
& \delta \rho_{\alpha=1}=\alpha \eta_{\alpha} q_{\alpha}
\end{aligned}
$$

3. Back to our problem..

3. Putting this together

prefactors depend only only on yelos and Xeb from lattice

3. Prefactors...

(QGPHAD)

	p	Λ	Σ^{+}	Σ^{-}	Ξ^{0}	Ξ^{-}	Ω^{-}	π^{+}	K^{+}
\bar{p}	$0.441,-0.066$	$0.485,-0.162$	$0.491,-0.146$	$0.479,-0.178$	$0.535,-0.242$	$0.529,-0.258$	$0.578,-0.338$	$0.006,0.016$	$-0.044,0.096$
$\bar{\Lambda}$	$0.183,-0.061$	$0.242,-0.094$	$0.242,-0.094$	$0.242,-0.094$	$0.302,-0.128$	$0.302,-0.128$	$0.361,-0.161$	$0.000,-0.000$	$-0.059,0.033$
$\bar{\Sigma}^{-}$	$0.074,-0.022$	$0.097,-0.038$	$0.099,-0.033$	$0.095,-0.043$	$0.122,-0.049$	$0.120,-0.054$	$0.144,-0.064$	$0.002,0.005$	$-0.023,0.016$
$\bar{\Sigma}^{+}$	$0.072,-0.027$	$0.097,-0.038$	$0.095,-0.043$	$0.099,-0.033$	$0.120,-0.054$	$0.122,-0.049$	$0.144,-0.064$	$-0.002,-0.005$	$-0.025,0.011$
$\bar{\Xi}^{0}$	$0.046,-0.021$	$0.069,-0.029$	$0.070,-0.028$	$0.069,-0.031$	$0.093,-0.036$	$0.092,-0.038$	$0.115,-0.045$	$0.001,0.001$	$-0.023,0.008$
$\bar{\Xi}^{+}$	$0.046,-0.022$	$0.069,-0.029$	$0.069,-0.031$	$0.070,-0.028$	$0.092,-0.038$	$0.093,-0.036$	$0.115,-0.045$	$-0.001,-0.001$	$-0.023,0.007$
$\bar{\Omega}^{+}$	$0.009,-0.005$	$0.015,-0.007$	$0.015,-0.007$	$0.015,-0.007$	$0.021,-0.008$	$0.021,-0.008$	$0.027,-0.009$	$-0.000,-0.000$	$-0.006,0.001$
π^{-}	$0.119,0.318$	$0.000,-0.000$	$0.239,0.636$	$-0.239,-0.636$	$0.119,0.318$	$-0.119,-0.318$	$-0.000,-0.000$	$0.239,0.636$	$0.119,0.318$
K^{-}	$-0.175,0.384$	$-0.627,0.352$	$-0.603,0.417$	$-0.651,0.288$	$-1.055,0.385$	$-1.079,0.321$	$-1.507,0.354$	$0.024,0.064$	$0.452,0.031$

prefactors completely determined by Xacp and final-state hadronic yields

4. Use blast-wave to go from coordinate space n to momentumspace rapiolity
(Monte Carlo + cecays)

π

Gladronization
part narrower
Gant well separate
components due
to thermal smearing
acceptance
gharrows with
centrality

QGP contribution negative

 - dips negative -too narrow for one source
SUMMARY

Charge correlations provide hope...

-Clear test of Xab from lattice

- quark density
strangeness in QGP
- off-diagonal elements
- Can test 2-wave charge production

$\mathbf{U}+\mathbf{U}$ Data

Conclusion Since cet Fiow cannot go away for finite y 2, effect must be due CME
because CME should disappear for events with no anisotropy $333 ?$

Problems with $\mathbf{U + U}$

1. Detector effects are important at high mult:

2. Efields don't cancel in $\mathrm{U}+\mathrm{U}=$ can lead to charge separation

Pion Cascade Multiplicity Dependence

