## Comparing Lattice Results to Measurements from RHIC/LHC

#### Scott Pratt, Michigan State University

S.P. PRL (2012)

## **Richard Feymann**

If a cat were to disappear in Pasadena and at the same time appear in Erice, that would be an example of global conservation of cats. This is not the way cats are conserved. Cats or charge or baryons are conserved in a much more continuous way. If any of these quantities begin to disappear in a region, then they begin to appear in a neighboring region. Consequently, we can identify a flow of charge out of a region with the disappearance of charge inside the region. This identification of the divergence of a flux with the time rate of change of a charge density is called a

#### local conservation law.

A local conservation law implies that the total charge is conserved globally, but the reverse does not hold. However, relativistically it is clear that non-local global conservation laws cannot exist, since to a moving observer the cat will appear in Erice before it disappears in Pasadena.

## **Charge Balance Functions**



#### Two waves of quark production



# Balance Function is sensitive to when charge is created

S. Bass, P. Danielewicz & S.P., PRL 2000



#### **Blast Wave**

Parameters: T, ε,  $v_{\perp x}$ ,  $v_{\perp y}$ ,  $\sigma_{\eta}$ ,  $\sigma_{\phi}$ 

Relative spread of emission points of balancing charges

T and  $v_{\perp}$  fixed by spectra (STAR fits)

Canonical methods enforce conservation



## **BW vs. STAR**





# BF vs Δη

STAR's Blast Wave model (Lisa & Retierre) + Local Charge Conservation also see P.Bozek, PLB(2005)



 Narrowing B(Δη) suggests delayed hadronization

 (Bass, Danielewicz and SP, PRL 2001)

 Narrowing B(Δφ) signals radial flow

 (Bozek, PLB 2005)



**Balance function & "parity" Observable**  $\gamma = \langle \cos(\phi_1 + \phi_2) \rangle = \langle \cos(2\phi + \Delta\phi) \rangle$  $= \langle \cos(2\phi) \rangle \langle \cos(\Delta\phi) \rangle$  $+\langle \cos(2\phi)\cos(\Delta\phi)\rangle - \langle \cos(2\phi)\rangle\langle\cos(\Delta\phi)\rangle$  $-\langle \sin(2\phi)\sin(\Delta\phi)\rangle$ STAR ⊢ 0.04 BlastWave ( $\sigma_{\phi}=0$ ) BlastWave • 0.03  $\gamma_{\rm P} \approx v_2 / M$  inevitable M/2 (γ<sub>os</sub> - γ<sub>ss</sub>) for low viscosity v<sub>2</sub> C<sub>B</sub> (σ<sub>φ</sub>=0) ----0.02 V2 CB --liquid & local 0.01 charge v<sub>2c</sub> (σ<sub>φ</sub>=0) .......▲ 0 conservation!!!! -0.01

0

10 20 30 40 50 60 70 % centrality

#### Lattice uses charge correlations

 $\chi_{ab} \equiv \langle Q_a Q_b \rangle / V$ a,b = uds

**Parton gas:**  $\chi_{ab}^{\rm QGP} = (n_a + n_{\overline{a}})\delta_{ab}$ 

#### Hadron gas:



off-diagonal elements

## Lattice results scaled by entropy

courtesy of Claudia Ratti



Transformation not perfectly sharp
Near Tc, up/down increase, strangeness slightly decreases

## Problems with Comparing Experiment to Lattice

1.Lattice = Grand Canonical (Particle Bath) Experiment = Canonical (net charge = 0)

2. Charge created at hadronization

3. One measures hadrons -- not uds

4. One measures momenta, not positions

## 1. Just before hadronization

$$g_{uu}(\Delta \eta) \equiv \langle Q_u(\eta)Q_u(\eta + \Delta \eta) \rangle$$
$$\int d\Delta \eta \ g_{ab}(\Delta \eta) = 0$$
$$g_{ud} = g_{us} = g_{ds} = 0$$

only extra parameter

$$-\frac{\exp(-\Delta\eta^2/2\sigma_{(QGP)}^2)}{(2\pi\sigma_{(QGP)}^2)^{1/2}}$$

 $g_{ab}(\Delta \eta) = \chi^{(\text{QGP})}_{ab} \left\{ \delta(\Delta \eta) \right\}$ From lattice!



# 2. Just after hadronization Summarizing...

 $-g'_{ab}(\Delta\eta) = \chi^{(QGP)}_{ab} \frac{e^{-\Delta\eta^2/2\sigma^2_{(QGP)}}}{\sqrt{2\pi\sigma^2_{(QGP)}}} + (\chi^{(HAD)}_{ab} - \chi^{(QGP)}_{ab}) \frac{e^{-\Delta\eta^2/2\sigma^2_{(HAD)}}}{\sqrt{2\pi\sigma^2_{(HAD)}}}$  $\chi^{(HAD)}_{ab} \equiv \sum n_{\alpha} q_{\alpha,a} q_{\alpha,b}$  $\alpha \in hadrons$  $\chi^{(QGP)}_{ab} \equiv 2n_a \delta_{ab}$ 

# 3. But, we measure $G_{\alpha\beta}$ not $g_{ab}$ !!! $\alpha,\beta=\pi,p,K...$ a,b=u,d,s

 $G_{\alpha\beta}(\Delta\eta) \equiv \langle [n_{\alpha} - n_{\overline{\alpha}}] [n_{\beta} - n_{\overline{\beta}}] \rangle$  $e.g., \quad G_{pK^{-}} = \langle [n_p - n_{\overline{p}}] [n_{K^{-}} - n_{K^{+}}] \rangle$ 

Generalized Balance Function (aside from factor of <n<sub>β</sub>>)

#### Analogous problem...

#### Given $\delta \rho_a$ and $n_\alpha$ , find $\delta n_\alpha$

#### **Solution: assign chemical potential**

$$\delta n_{\alpha} = \langle n_{\alpha} \rangle \left( e^{\mu_{a} q_{\alpha,a}/T} - 1 \right)$$

$$\delta \rho_a = \sum_{\alpha} \delta n_{\alpha} q_{\alpha,a}$$

α

$$\frac{\mu_{a}}{T} = \frac{\delta \rho_{a}}{\sum q_{\alpha,a} \langle n_{\alpha} \rangle q_{\alpha,b}} = \frac{\delta \rho_{a}}{\chi_{ab}^{had}}$$

#### 3. Back to our problem...

**Given:** 
$$g'_{ab}(\Delta \eta) = \langle \delta \rho_a(0) \delta \rho_b(\Delta \eta) \rangle = \sum_{\alpha\beta} \langle n_\alpha(0) q_{\alpha,a} n_\beta(\Delta \eta) q_{\beta,b} \rangle$$

**Assume:**  $\langle n_{\alpha}(0)n_{\beta}(\Delta\eta)\rangle = \langle n_{\alpha}\rangle\langle n_{\beta}\rangle\exp\left\{\sum_{ab}\mu_{ab}(\Delta\eta)q_{\alpha,a}q_{\beta,b}\right\}$ 

# **Solution:** $\mu_{ab}(\Delta \eta) = \chi_{ac}^{(HAD)-1} g'_{cd}(\Delta \eta) \chi_{db}^{(HAD)-1}$

#### 3. Putting this together



prefactors depend only only on yields and  $\chi_{ab}$  from lattice



## (QGP,HAD)

|                  | p             | $\Lambda$      | $\Sigma^+$    | $\Sigma^{-}$  | $\Xi^0$       | [1]           | $\Omega^{-}$  | $\pi^+$       | $K^+$         |
|------------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| $\bar{p}$        | 0.441,-0.066  | 0.485,-0.162   | 0.491,-0.146  | 0.479,-0.178  | 0.535,-0.242  | 0.529,-0.258  | 0.578,-0.338  | 0.006,  0.016 | -0.044, 0.096 |
| $\bar{\Lambda}$  | 0.183,-0.061  | 0.242,-0.094   | 0.242,-0.094  | 0.242,-0.094  | 0.302, -0.128 | 0.302,-0.128  | 0.361,-0.161  | 0.000,-0.000  | -0.059, 0.033 |
| $\bar{\Sigma}^-$ | 0.074,-0.022  | 0.097, -0.038  | 0.099,-0.033  | 0.095,-0.043  | 0.122,-0.049  | 0.120,-0.054  | 0.144,-0.064  | 0.002,  0.005 | -0.023, 0.016 |
| $\bar{\Sigma}^+$ | 0.072,-0.027  | 0.097,-0.038   | 0.095,-0.043  | 0.099,-0.033  | 0.120, -0.054 | 0.122,-0.049  | 0.144,-0.064  | -0.002,-0.005 | -0.025, 0.011 |
| $\bar{\Xi}^0$    | 0.046,-0.021  | 0.069,-0.029   | 0.070,-0.028  | 0.069,-0.031  | 0.093,-0.036  | 0.092,-0.038  | 0.115,-0.045  | 0.001,  0.001 | -0.023, 0.008 |
| $\bar{\Xi}^+$    | 0.046,-0.022  | 0.069,-0.029   | 0.069,-0.031  | 0.070,-0.028  | 0.092,-0.038  | 0.093,-0.036  | 0.115,-0.045  | -0.001,-0.001 | -0.023, 0.007 |
| $\bar{\Omega}^+$ | 0.009,-0.005  | 0.015, -0.007  | 0.015,-0.007  | 0.015,-0.007  | 0.021,-0.008  | 0.021, -0.008 | 0.027,-0.009  | -0.000,-0.000 | -0.006, 0.001 |
| $\pi^{-}$        | 0.119,  0.318 | 0.000,-0.000   | 0.239, 0.636  | -0.239,-0.636 | 0.119,  0.318 | -0.119,-0.318 | -0.000,-0.000 | 0.239,  0.636 | 0.119,  0.318 |
| $K^{-}$          | -0.175, 0.384 | -0.627,  0.352 | -0.603, 0.417 | -0.651, 0.288 | -1.055, 0.385 | -1.079, 0.321 | -1.507, 0.354 | 0.024,0.064   | 0.452,0.031   |

prefactors completely determined by XQGP and final-state hadronic yields

# 4. Use blast-wave to go from coordinate space η to momentumspace rapidity (Monte Carlo + decays)



#### $\pi^+\pi^-$

 Hadronization part narrower Can't well separate components due to thermal smearing acceptance narrows with centrality



K+K-

Little hadronic contribution
Can test whether
QGP is rich in strangeness



#### p-pbar

 hadron contribution negative tests two-wave nature no narrowing with centrality sensitive to quark density of QGP



QGP contribution negative

dips negative

too narrow for one source



#### Charge correlations provide hope...

Clear test of Xab from lattice
quark density
strangeness in QGP
off-diagonal elements

Can test 2-wave charge production





Conclusion: Since CC+Flow cannot go away for finite v2, effect must be due CME because CME should disappear for events with no anisotropy ?????

## **Problems with U+U**

#### 1. Detector effects are important at high mult.



2. E fields don't cancel in U+U --can lead to charge separation



Lines: Different Calculations •Default •Double anisotropy •Halve Size •Double cross section

## Pion cascade Δη dependence

