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The first experiments to study the quark-gluon plasma at the LHC reveal that even at the hottest temperatures
ever produced at a particle accelerator, this extreme state of matter remains the best example of an ideal liquid.
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In November, the Large Hadron Collider (LHC) at
CERN began its first heavy-ion run, producing lead-lead
collisions with the highest center of mass energy ever
achieved. Now, a pair of papers appearing in Physical
Review Letters, from the ALICE [1] and ATLAS [2] exper-
iments at the LHC, presents a first glimpse of what new
information these high-energy collisions will offer about
the quark-gluon plasma—the state of matter believed to
have filled the universe at the time of the Big Bang. The
ALICE results strongly indicate that the quark-gluon
plasma remains a nearly ideal liquid, as seen earlier at
the Relativistic Heavy Ion Collider (RHIC), even at sig-
nificantly higher energies. Complementing this work,
the ATLAS team has shown that even very high energy
jets of particles emitted from the collision lose a large
fraction of their energy into the quark-gluon plasma
(and are sometimes completely dissipated), a sign that
the quarks and gluons are strongly interacting with the
hotter plasma.

The quark-gluon plasma (QGP) is the extreme state
of matter that occurs above a critical temperature Tc ⇥
170 MeV (2 trillion degrees Kelvin). Unlike the world we
live in, where quarks and gluons are not free, but bound
into nucleons, the QGP can be viewed as a plasma con-
sisting of quarks and gluons that interact via Coulom-
bic forces. (The “color” charge of quarks and gluons
determines the strength of the strong force in the same
way that electric charge determines the strength of the
electromagnetic force.) Laboratory collider experiments
seek to understand the strength of these forces and their
effect on the properties of the QGP.

Prior to experiments in 2000 at Brookhaven National
Laboratory’s RHIC facility, the main question was how

best to study the thermodynamics and kinetics of the
quark-gluon plasma. In particular, knowing the mean
free path of particles in the plasma was important be-
cause it determined whether the QGP behaved as a liq-
uid or a gas. The RHIC experiments essentially an-
swered these questions by observing the explosion (the
“Little Bang”) created in the collision of high-energy
gold ions. The experiments showed that the resulting
plasma could be excellently described by a hydrody-
namic picture of a nearly ideal liquid, in which particles
had a mean free path that was effectively zero.

The detectors at RHIC and the LHC capture the dy-
namics of the explosion by measuring the symmetry of
the subsequent flow of particles: the radial flow (⇥0),
the elliptic flow (⇥2), the triangular flow (⇥3), and so on.
(These are actually the Fourier components of the flow,
projected onto the harmonics ⇤cos(n�)⌅, where � is the
angle that wraps around the line of collision). The com-
ponents depend on the impact parameter (that is, how
“head on” the colliding nuclei are), the particle types,
and their transverse momenta.

At RHIC, measuring how these flow components
vary with different experimental conditions provided
information about matter in a temperature range be-
tween 0.5Tc and 2Tc. The LHC has a higher collision
energy than RHIC and is therefore expected to produce
hotter matter. Showing that this is indeed the case, a
companion paper from ALICE provides the first mea-
surement of the density of charged particles produced
in the collisions [3]. ALICE determined the number of
charged particles, or “multiplicity” of a collision, as a
function of the “pseudorapidity”—a measure of the an-
gle of particle trajectories with respect to the line of col-
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FIG. 1: The ALICE experiment suggests that the quark-gluon
plasma remains a strongly coupled liquid, even at tempera-
tures that are 30% greater than what was available at RHIC.
The plot shows the “elliptic flow parameter” ⇥2 (a measure of
the coupling in the plasma) at different heavy-ion collision en-
ergies, based on several experiments (including the new data
from ALICE [1]). (Note the energy scale is plotted on a loga-
rithmic scale and spans three orders of magnitude.) The trend
is consistent with theoretical predictions (pink diamonds) for
an ideal liquid [4].

lision. By measuring the multiplicity, ALICE was able to
calibrate the temperature of the plasma at the LHC com-
pared to that produced at RHIC, yielding (at early times
in the explosion) the relation between the temperatures
TLHC(t)/TRHIC(t) = 1.3. However, the initial temper-
ature at the LHC could be even higher, since it is likely
the plasma equilibrates at an earlier time than at RHIC.

Some researchers expected that the QGP produced
at the LHC would switch to a regime where quarks
and gluons were more weakly coupled at higher tem-
perature. If so, the mean free path of particles in the
plasma and the viscosity should be larger, the experi-
mental signature of which would be smaller flow com-
ponents (⇥n). However, as the ALICE results [1] have
clearly shown, this is not the case. As seen in Fig. 1, the
parameter that characterizes the elliptical nature of the
liquid flow, ⇥2, has actually grown by about 30%, exactly
as predicted by the (ideal) hydrodynamics a decade ago
[4]. The dependence of ⇥2 on transverse momentum is
nearly identical to what was measured at RHIC, and AL-
ICE has shown that the radial flow also grows with en-
ergy (a result that will be described elsewhere).

One of the other important discoveries at RHIC was
that particle jets are strongly quenched when they in-
teract with the quark-gluon plasma. Pairs of energetic
particle jets are produced when quarks and gluons in

FIG. 2: (Left) Example of a jet without a visible partner. (Right)
Asymmetric jets (where one jet loses most of its energy) are
rare in proton-proton collisions, but the ATLAS measurements
showed such events occur with a high probability in lead-lead
collisions. The asymmetry Aj for two jets with energy E1 and
E2 is defined as Aj = (E1 � E2)/(E1 + E2). (Credit: G. Aad et
al., [2])

the colliding nuclei happen to scatter from each other at
large angles. If the jets are produced near the edge of the
plasma, the jet that moves outward will be detected, un-
changed in energy, but the one that has to move through
the plasma loses a lot of energy. At RHIC, the transverse
energy of jets observed was about E⇧ ⇤ 20–30 GeV,
which made it difficult for detectors to see them against
the large and fluctuating background of thousands of
particles. The higher energy available at the LHC, as
well as ATLAS’ excellent finely granulated calorimeter,
makes it possible to detect and measure jets with a trans-
verse energy from 25 GeV to well above 100 GeV (Fig.
2, left). In central lead-lead collisions, the probability
of a large jet asymmetry (that is, one jet arriving into
the detector with more energy than its partner jet that
moves in the opposite direction) turns out to be com-
pletely different from that in proton-proton collisions.
Since there is no quark-gluon plasma to stop them in the
latter case, both jets tend to have about equal energy, but
in lead-lead collisions, in which the second jet is forced
to move through the plasma, the measured asymmetry
implies that, on average, more than half of the jet en-
ergy is lost (Fig. 2, right). ATLAS has also observed ex-
tremely asymmetric events, in which such high-energy
jets basically dissipated entirely, without a companion
jet.

What do these results tell us about the quark-gluon
plasma? The mean free path for particles in the plasma
can be conveniently expressed via a dimensionless ratio
(�/sh̄), where � is the shear viscosity, s is the entropy
density and h̄ is Planck’s constant. In a weakly coupled
quark-gluon plasma, the mean free path should be large
(�/sh̄ ⌅ 1), while it should be small in a strongly cou-
pled plasma. RHIC data analysis has shown it to be
extremely small, close to the theoretically conjectured
lower limit �/sh̄ = 1/4⇤ for infinitely strong coupling
[5]. That this strong-coupling picture holds for the QGP
seen at the LHC seems now likely. Naively, one might
have expected that compared to the jets produced at
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the quark-gluon plasma—the state of matter believed to
have filled the universe at the time of the Big Bang. The
ALICE results strongly indicate that the quark-gluon
plasma remains a nearly ideal liquid, as seen earlier at
the Relativistic Heavy Ion Collider (RHIC), even at sig-
nificantly higher energies. Complementing this work,
the ATLAS team has shown that even very high energy
jets of particles emitted from the collision lose a large
fraction of their energy into the quark-gluon plasma
(and are sometimes completely dissipated), a sign that
the quarks and gluons are strongly interacting with the
hotter plasma.

The quark-gluon plasma (QGP) is the extreme state
of matter that occurs above a critical temperature Tc ⇥
170 MeV (2 trillion degrees Kelvin). Unlike the world we
live in, where quarks and gluons are not free, but bound
into nucleons, the QGP can be viewed as a plasma con-
sisting of quarks and gluons that interact via Coulom-
bic forces. (The “color” charge of quarks and gluons
determines the strength of the strong force in the same
way that electric charge determines the strength of the
electromagnetic force.) Laboratory collider experiments
seek to understand the strength of these forces and their
effect on the properties of the QGP.

Prior to experiments in 2000 at Brookhaven National
Laboratory’s RHIC facility, the main question was how

best to study the thermodynamics and kinetics of the
quark-gluon plasma. In particular, knowing the mean
free path of particles in the plasma was important be-
cause it determined whether the QGP behaved as a liq-
uid or a gas. The RHIC experiments essentially an-
swered these questions by observing the explosion (the
“Little Bang”) created in the collision of high-energy
gold ions. The experiments showed that the resulting
plasma could be excellently described by a hydrody-
namic picture of a nearly ideal liquid, in which particles
had a mean free path that was effectively zero.

The detectors at RHIC and the LHC capture the dy-
namics of the explosion by measuring the symmetry of
the subsequent flow of particles: the radial flow (⇥0),
the elliptic flow (⇥2), the triangular flow (⇥3), and so on.
(These are actually the Fourier components of the flow,
projected onto the harmonics ⇤cos(n�)⌅, where � is the
angle that wraps around the line of collision). The com-
ponents depend on the impact parameter (that is, how
“head on” the colliding nuclei are), the particle types,
and their transverse momenta.

At RHIC, measuring how these flow components
vary with different experimental conditions provided
information about matter in a temperature range be-
tween 0.5Tc and 2Tc. The LHC has a higher collision
energy than RHIC and is therefore expected to produce
hotter matter. Showing that this is indeed the case, a
companion paper from ALICE provides the first mea-
surement of the density of charged particles produced
in the collisions [3]. ALICE determined the number of
charged particles, or “multiplicity” of a collision, as a
function of the “pseudorapidity”—a measure of the an-
gle of particle trajectories with respect to the line of col-
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FIG. 1: The ALICE experiment suggests that the quark-gluon
plasma remains a strongly coupled liquid, even at tempera-
tures that are 30% greater than what was available at RHIC.
The plot shows the “elliptic flow parameter” ⇥2 (a measure of
the coupling in the plasma) at different heavy-ion collision en-
ergies, based on several experiments (including the new data
from ALICE [1]). (Note the energy scale is plotted on a loga-
rithmic scale and spans three orders of magnitude.) The trend
is consistent with theoretical predictions (pink diamonds) for
an ideal liquid [4].

lision. By measuring the multiplicity, ALICE was able to
calibrate the temperature of the plasma at the LHC com-
pared to that produced at RHIC, yielding (at early times
in the explosion) the relation between the temperatures
TLHC(t)/TRHIC(t) = 1.3. However, the initial temper-
ature at the LHC could be even higher, since it is likely
the plasma equilibrates at an earlier time than at RHIC.

Some researchers expected that the QGP produced
at the LHC would switch to a regime where quarks
and gluons were more weakly coupled at higher tem-
perature. If so, the mean free path of particles in the
plasma and the viscosity should be larger, the experi-
mental signature of which would be smaller flow com-
ponents (⇥n). However, as the ALICE results [1] have
clearly shown, this is not the case. As seen in Fig. 1, the
parameter that characterizes the elliptical nature of the
liquid flow, ⇥2, has actually grown by about 30%, exactly
as predicted by the (ideal) hydrodynamics a decade ago
[4]. The dependence of ⇥2 on transverse momentum is
nearly identical to what was measured at RHIC, and AL-
ICE has shown that the radial flow also grows with en-
ergy (a result that will be described elsewhere).

One of the other important discoveries at RHIC was
that particle jets are strongly quenched when they in-
teract with the quark-gluon plasma. Pairs of energetic
particle jets are produced when quarks and gluons in

FIG. 2: (Left) Example of a jet without a visible partner. (Right)
Asymmetric jets (where one jet loses most of its energy) are
rare in proton-proton collisions, but the ATLAS measurements
showed such events occur with a high probability in lead-lead
collisions. The asymmetry Aj for two jets with energy E1 and
E2 is defined as Aj = (E1 � E2)/(E1 + E2). (Credit: G. Aad et
al., [2])

the colliding nuclei happen to scatter from each other at
large angles. If the jets are produced near the edge of the
plasma, the jet that moves outward will be detected, un-
changed in energy, but the one that has to move through
the plasma loses a lot of energy. At RHIC, the transverse
energy of jets observed was about E⇧ ⇤ 20–30 GeV,
which made it difficult for detectors to see them against
the large and fluctuating background of thousands of
particles. The higher energy available at the LHC, as
well as ATLAS’ excellent finely granulated calorimeter,
makes it possible to detect and measure jets with a trans-
verse energy from 25 GeV to well above 100 GeV (Fig.
2, left). In central lead-lead collisions, the probability
of a large jet asymmetry (that is, one jet arriving into
the detector with more energy than its partner jet that
moves in the opposite direction) turns out to be com-
pletely different from that in proton-proton collisions.
Since there is no quark-gluon plasma to stop them in the
latter case, both jets tend to have about equal energy, but
in lead-lead collisions, in which the second jet is forced
to move through the plasma, the measured asymmetry
implies that, on average, more than half of the jet en-
ergy is lost (Fig. 2, right). ATLAS has also observed ex-
tremely asymmetric events, in which such high-energy
jets basically dissipated entirely, without a companion
jet.

What do these results tell us about the quark-gluon
plasma? The mean free path for particles in the plasma
can be conveniently expressed via a dimensionless ratio
(�/sh̄), where � is the shear viscosity, s is the entropy
density and h̄ is Planck’s constant. In a weakly coupled
quark-gluon plasma, the mean free path should be large
(�/sh̄ ⌅ 1), while it should be small in a strongly cou-
pled plasma. RHIC data analysis has shown it to be
extremely small, close to the theoretically conjectured
lower limit �/sh̄ = 1/4⇤ for infinitely strong coupling
[5]. That this strong-coupling picture holds for the QGP
seen at the LHC seems now likely. Naively, one might
have expected that compared to the jets produced at
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In November, the Large Hadron Collider (LHC) at
CERN began its first heavy-ion run, producing lead-lead
collisions with the highest center of mass energy ever
achieved. Now, a pair of papers appearing in Physical
Review Letters, from the ALICE [1] and ATLAS [2] exper-
iments at the LHC, presents a first glimpse of what new
information these high-energy collisions will offer about
the quark-gluon plasma—the state of matter believed to
have filled the universe at the time of the Big Bang. The
ALICE results strongly indicate that the quark-gluon
plasma remains a nearly ideal liquid, as seen earlier at
the Relativistic Heavy Ion Collider (RHIC), even at sig-
nificantly higher energies. Complementing this work,
the ATLAS team has shown that even very high energy
jets of particles emitted from the collision lose a large
fraction of their energy into the quark-gluon plasma
(and are sometimes completely dissipated), a sign that
the quarks and gluons are strongly interacting with the
hotter plasma.

The quark-gluon plasma (QGP) is the extreme state
of matter that occurs above a critical temperature Tc ⇥
170 MeV (2 trillion degrees Kelvin). Unlike the world we
live in, where quarks and gluons are not free, but bound
into nucleons, the QGP can be viewed as a plasma con-
sisting of quarks and gluons that interact via Coulom-
bic forces. (The “color” charge of quarks and gluons
determines the strength of the strong force in the same
way that electric charge determines the strength of the
electromagnetic force.) Laboratory collider experiments
seek to understand the strength of these forces and their
effect on the properties of the QGP.

Prior to experiments in 2000 at Brookhaven National
Laboratory’s RHIC facility, the main question was how

best to study the thermodynamics and kinetics of the
quark-gluon plasma. In particular, knowing the mean
free path of particles in the plasma was important be-
cause it determined whether the QGP behaved as a liq-
uid or a gas. The RHIC experiments essentially an-
swered these questions by observing the explosion (the
“Little Bang”) created in the collision of high-energy
gold ions. The experiments showed that the resulting
plasma could be excellently described by a hydrody-
namic picture of a nearly ideal liquid, in which particles
had a mean free path that was effectively zero.

The detectors at RHIC and the LHC capture the dy-
namics of the explosion by measuring the symmetry of
the subsequent flow of particles: the radial flow (⇥0),
the elliptic flow (⇥2), the triangular flow (⇥3), and so on.
(These are actually the Fourier components of the flow,
projected onto the harmonics ⇤cos(n�)⌅, where � is the
angle that wraps around the line of collision). The com-
ponents depend on the impact parameter (that is, how
“head on” the colliding nuclei are), the particle types,
and their transverse momenta.

At RHIC, measuring how these flow components
vary with different experimental conditions provided
information about matter in a temperature range be-
tween 0.5Tc and 2Tc. The LHC has a higher collision
energy than RHIC and is therefore expected to produce
hotter matter. Showing that this is indeed the case, a
companion paper from ALICE provides the first mea-
surement of the density of charged particles produced
in the collisions [3]. ALICE determined the number of
charged particles, or “multiplicity” of a collision, as a
function of the “pseudorapidity”—a measure of the an-
gle of particle trajectories with respect to the line of col-
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FIG. 1: The ALICE experiment suggests that the quark-gluon
plasma remains a strongly coupled liquid, even at tempera-
tures that are 30% greater than what was available at RHIC.
The plot shows the “elliptic flow parameter” ⇥2 (a measure of
the coupling in the plasma) at different heavy-ion collision en-
ergies, based on several experiments (including the new data
from ALICE [1]). (Note the energy scale is plotted on a loga-
rithmic scale and spans three orders of magnitude.) The trend
is consistent with theoretical predictions (pink diamonds) for
an ideal liquid [4].

lision. By measuring the multiplicity, ALICE was able to
calibrate the temperature of the plasma at the LHC com-
pared to that produced at RHIC, yielding (at early times
in the explosion) the relation between the temperatures
TLHC(t)/TRHIC(t) = 1.3. However, the initial temper-
ature at the LHC could be even higher, since it is likely
the plasma equilibrates at an earlier time than at RHIC.

Some researchers expected that the QGP produced
at the LHC would switch to a regime where quarks
and gluons were more weakly coupled at higher tem-
perature. If so, the mean free path of particles in the
plasma and the viscosity should be larger, the experi-
mental signature of which would be smaller flow com-
ponents (⇥n). However, as the ALICE results [1] have
clearly shown, this is not the case. As seen in Fig. 1, the
parameter that characterizes the elliptical nature of the
liquid flow, ⇥2, has actually grown by about 30%, exactly
as predicted by the (ideal) hydrodynamics a decade ago
[4]. The dependence of ⇥2 on transverse momentum is
nearly identical to what was measured at RHIC, and AL-
ICE has shown that the radial flow also grows with en-
ergy (a result that will be described elsewhere).

One of the other important discoveries at RHIC was
that particle jets are strongly quenched when they in-
teract with the quark-gluon plasma. Pairs of energetic
particle jets are produced when quarks and gluons in

FIG. 2: (Left) Example of a jet without a visible partner. (Right)
Asymmetric jets (where one jet loses most of its energy) are
rare in proton-proton collisions, but the ATLAS measurements
showed such events occur with a high probability in lead-lead
collisions. The asymmetry Aj for two jets with energy E1 and
E2 is defined as Aj = (E1 � E2)/(E1 + E2). (Credit: G. Aad et
al., [2])

the colliding nuclei happen to scatter from each other at
large angles. If the jets are produced near the edge of the
plasma, the jet that moves outward will be detected, un-
changed in energy, but the one that has to move through
the plasma loses a lot of energy. At RHIC, the transverse
energy of jets observed was about E⇧ ⇤ 20–30 GeV,
which made it difficult for detectors to see them against
the large and fluctuating background of thousands of
particles. The higher energy available at the LHC, as
well as ATLAS’ excellent finely granulated calorimeter,
makes it possible to detect and measure jets with a trans-
verse energy from 25 GeV to well above 100 GeV (Fig.
2, left). In central lead-lead collisions, the probability
of a large jet asymmetry (that is, one jet arriving into
the detector with more energy than its partner jet that
moves in the opposite direction) turns out to be com-
pletely different from that in proton-proton collisions.
Since there is no quark-gluon plasma to stop them in the
latter case, both jets tend to have about equal energy, but
in lead-lead collisions, in which the second jet is forced
to move through the plasma, the measured asymmetry
implies that, on average, more than half of the jet en-
ergy is lost (Fig. 2, right). ATLAS has also observed ex-
tremely asymmetric events, in which such high-energy
jets basically dissipated entirely, without a companion
jet.

What do these results tell us about the quark-gluon
plasma? The mean free path for particles in the plasma
can be conveniently expressed via a dimensionless ratio
(�/sh̄), where � is the shear viscosity, s is the entropy
density and h̄ is Planck’s constant. In a weakly coupled
quark-gluon plasma, the mean free path should be large
(�/sh̄ ⌅ 1), while it should be small in a strongly cou-
pled plasma. RHIC data analysis has shown it to be
extremely small, close to the theoretically conjectured
lower limit �/sh̄ = 1/4⇤ for infinitely strong coupling
[5]. That this strong-coupling picture holds for the QGP
seen at the LHC seems now likely. Naively, one might
have expected that compared to the jets produced at
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In November, the Large Hadron Collider (LHC) at
CERN began its first heavy-ion run, producing lead-lead
collisions with the highest center of mass energy ever
achieved. Now, a pair of papers appearing in Physical
Review Letters, from the ALICE [1] and ATLAS [2] exper-
iments at the LHC, presents a first glimpse of what new
information these high-energy collisions will offer about
the quark-gluon plasma—the state of matter believed to
have filled the universe at the time of the Big Bang. The
ALICE results strongly indicate that the quark-gluon
plasma remains a nearly ideal liquid, as seen earlier at
the Relativistic Heavy Ion Collider (RHIC), even at sig-
nificantly higher energies. Complementing this work,
the ATLAS team has shown that even very high energy
jets of particles emitted from the collision lose a large
fraction of their energy into the quark-gluon plasma
(and are sometimes completely dissipated), a sign that
the quarks and gluons are strongly interacting with the
hotter plasma.

The quark-gluon plasma (QGP) is the extreme state
of matter that occurs above a critical temperature Tc ⇥
170 MeV (2 trillion degrees Kelvin). Unlike the world we
live in, where quarks and gluons are not free, but bound
into nucleons, the QGP can be viewed as a plasma con-
sisting of quarks and gluons that interact via Coulom-
bic forces. (The “color” charge of quarks and gluons
determines the strength of the strong force in the same
way that electric charge determines the strength of the
electromagnetic force.) Laboratory collider experiments
seek to understand the strength of these forces and their
effect on the properties of the QGP.

Prior to experiments in 2000 at Brookhaven National
Laboratory’s RHIC facility, the main question was how

best to study the thermodynamics and kinetics of the
quark-gluon plasma. In particular, knowing the mean
free path of particles in the plasma was important be-
cause it determined whether the QGP behaved as a liq-
uid or a gas. The RHIC experiments essentially an-
swered these questions by observing the explosion (the
“Little Bang”) created in the collision of high-energy
gold ions. The experiments showed that the resulting
plasma could be excellently described by a hydrody-
namic picture of a nearly ideal liquid, in which particles
had a mean free path that was effectively zero.

The detectors at RHIC and the LHC capture the dy-
namics of the explosion by measuring the symmetry of
the subsequent flow of particles: the radial flow (⇥0),
the elliptic flow (⇥2), the triangular flow (⇥3), and so on.
(These are actually the Fourier components of the flow,
projected onto the harmonics ⇤cos(n�)⌅, where � is the
angle that wraps around the line of collision). The com-
ponents depend on the impact parameter (that is, how
“head on” the colliding nuclei are), the particle types,
and their transverse momenta.

At RHIC, measuring how these flow components
vary with different experimental conditions provided
information about matter in a temperature range be-
tween 0.5Tc and 2Tc. The LHC has a higher collision
energy than RHIC and is therefore expected to produce
hotter matter. Showing that this is indeed the case, a
companion paper from ALICE provides the first mea-
surement of the density of charged particles produced
in the collisions [3]. ALICE determined the number of
charged particles, or “multiplicity” of a collision, as a
function of the “pseudorapidity”—a measure of the an-
gle of particle trajectories with respect to the line of col-
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Two fundamental scales, 
describing perturbations at freezeout 

(P.Staig,ES,2010) 

1.The sound horizon: 
radius of about 6fm 
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II. SETTING UP THE PROBLEM

A. The main scales of the problem

Before going to specifics, let us formulate the problem
in a more general way, which in a way connects it to the
Big Bang fluctuations.

Two generic scales are (i) the macroscopic scale R and
the microscopic scale l, being in the relation

l ⌅ R (2.1)

which ensure such macroscopic tools as thermo and hy-
drodynamics to work.

the macroscopic scale R is the size of the fireball in
heavy ion collisions and the curvature scale a in the Big
bang. Note that both are in principle time dependent,
demonstrating expansion of the system. However, while
a(t) changes by many orders of magnitude, the fireball
size increase rather modestly, e.g. from 6 to 8-9 fm at its
maximal size, for AuAu collisions at full RHIC energy.

The microscopic scale l is the mean free path for weakly
coupled systems (weakly coupled QGP or hadronic gas):
in the case of strongly coupled QGP (sQGP) it is just
the inverse temperature l = 1/T . For AuAu collisions
at full RHIC energy l it changes from .5 to about 1 fm,
from initial to hadronization time. Thus R/l ranges from
about 12 to 9 in the region we use hydrodynamics.

Now let us define two new scales. The first is the sound
horizon

Hs =
⇤ ⇥f

0
d⌅cs(⌅) (2.2)

where the integral is taken from the formation to freeze-
out time. At the freezeout the waves just stop where they
are, and the matter is split into independent particles.

It is the same idea as suggested by ???? and Sunyaev-
Zeldovich for Early Universe [? ]: the initial perturba-
tion (say higher density at some point) creates a sphere of
such radius, at which the density is a bit higher than the
average: when galaxies are formed they are correlated
with that sphere and thus is observed today in their cor-
relation function. It turns out that in the Big Bang this
is produces a “standard ruler”, which is today of about
Hs ⇤ 150 Mps, observed in galaxy’s distribution and in
CMB correlations.

One of the main issues discussed in this paper is
whether any manifestation of the sound horizon scale can
be observed in the Little Bang. For example, one may
think of angular correlations with angles

�⇧ ⇥ Hs

R
(2.3)

or angular harmonics with m ⇥ 1/�⇧. In the cosmology
such angular momentum is l ⇥ 200. Going ahead of
ourselves, we will show that in our problem of the Little
bang, for AuAu collisions at RHIC, we will deal with
m ⇥ 3.

The second new scale is new, we would like to call
it “the viscous horizon scale” Rv. Its verbal definition
is that it separates the wavelength of the sound which
are and are not a⇥ected by the viscosity e⇥ects. Smooth
fireball and fluctuations

Tµ� = T̃µ� + �Tµ� (2.4)

Textbook dispersion law for the sound, including the vis-
cosity term, is

⌃ = csk +
i

2
4⇥

3s

k2

T
(2.5)

After that Fourier transform put it into momentum
form, after which one can solve time dependence us-
ing momentum-dependent dispersion relation as well as
imaginary part induced by viscosity.

only shear viscosity for now

�Tµ�(t) = exp

�
�2

3
⇥

s

k2t

3T

⇥
�Tµ�(0) (2.6)

The spectrum of the original t = 0 perturbations have
harmonics of the so called “saturation scale” Qs, which
is for RHIC of the order of Qs ⇥ 1GeV . Even if one
takes the minimal viscosity ⇥/s = 1/4⇤, by freezeout
t ⇥ 10 fm/c this exponent gets very large, damping such
fluctuations to un observably small magnitude. Only the
harmonics below new viscous survival scale k < kv would
survive, which is determined from a condition that the
exponent above is less than 1

kv =
2⇤

Rv
=

⌅
3Ts

2⌅f⇥
⇥ 200MeV (2.7)

(the number comes from an estimate ⇥/s = 1/4⇤, T ⇥
200 MeV, ⌅f ⇥ 10fm/c).

What it means is that small spatial scale fluctuations
would become spheres (distorted spheres) with the width
and momenta of the order of 1/kv. Note that while
the radius of the spheres increases linearly with time,
this width increases only as t1/2, which means that the
spheres become sharper and sharper as time goes by.

Let us finish this section by pointing our the hierarchy
relation between all those four scales which we assume is
true

R > Hs > Rv > l (2.8)

The fluctuations at angular scale less than �⇧ = Rv/R
or harmonics large than m > R/Rv can hardly be found,
as they are forgotten with exponential accuracy.

B. From the initial state fluctuations to the
observed objects at freezeout

Before we go to specifics of di⇥erent fluctuations and
their propagation as the system evolves, let us describe
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Perturbations of 
the Big and the 
Little Bangs 
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The Fate of the Initial State Fluctuations in Heavy Ion Collisions

Edward Shuryak
Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794

(February 20, 2009)

We study the propagation of local density fluctuations created in heavy ion collisions (either due to
hard collisions or color charge separation) through the hydrodynamical evolution, which is modeled
by overall Hubble flow. While naively they should expand to spherical waves of sound with the
radius given by sound horizon, making them delocalized and hardly observable, the real solution
is much more interesting. The interplay of time-dependent speed of sound and Hubble expansion
leads to recreation of a fluctuations at original location and even their amplification.

I. INTRODUCTION

The so called ridge phenomenon has been observed at
RHIC in the events with a hard (large pt) trigger [1].
Its main features are seen in 2-particle correlators, which
show a peak at relative azimuthal angle φ = φ1 − φ2 =
0 with a width of about 1 radian, about twice that of
the jet. Unlike jets which are localized in rapidity, the
ridge has very wide distribution in (pseudo)rapidity η, at
least up to |η| ≈ 4 (as shown by PHOBOS collaboration
[2]). The spectrum of particles from the ridge is slightly
harder than the bulk one but much softer than that for a
jet. Their composition is also very different from jets, in
particular large fraction of baryons/anti-baryons. These
features – especially the last one – clearly indicate that
the ridge is related to the interaction of the jet with the
hydrodynamical expansion of the fireball, as suggested by
Voloshin [3]. Another important ingredient introduced
in my paper [4] is the existence of forward-backward jets
accompanying any hard scattering and provided extra
particles, which are widely distributed in rapidity.

STAR had observed ridge-like correlations in the 2-
body correlators without the hard trigger [5,6] as well,
known as a “soft ridge”. Its explanation, suggested by
McLerran and collaborators [?,8], is based on the ini-
tial state color fluctuations in the colliding nuclei, which
then create the “color flux tubes” with the longitudinal
electric and magnetic color fields at some “spots” in the
transverse plane of the collision. These tubes are sup-
posed to be stretched between two fragmentation regions
of the colliding nuclei, explaining wide rapidity range of
the correlation.

Whatever the origin of those fluctuations, they cannot
be separated from ambient matter, unless pushed side-
wise by hydrodynamical radial flow, see Fig.1(a). Im-
portant, that although extra particles may be separated
by large rapidity gaps, they correspond to the same po-
sition in the transverse plane and thus have the same
asymuthal flow direction. With its velocity reaching up
to .7 or so at the rim of the fireball, and with the account
for thermal pion velocities, one can roughly reproduce a
peak in ∆φ of the same order as in observed correlators,

see details e.g. in [4]. (It is similar to Big Bang mapping
primordial temperature fluctuations of the background
radiation onto the visible sky.)

FIG. 1. A sketch of the transverse plane of the colliding
system: the “spots” of extra density (a) are shown as black
disks, to be moved by collective radial flow (arrows). Naive
sound expansion (b) would produce large-size and small am-
plitude wave: yet the correct solution includes also another
wave (c) of smaller radius and larger amplitude.

It was however assumed in all these works that the fluc-
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Heavy ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) are well described by the (nearly ideal)
hydrodynamics. In the present paper, we study the propagation of perturbations induced by moving charges (jets)
on top of the expanding fireball, using hydrodynamics and (dual) magnetohydrodynamics. Two experimentally
observed structures, called a “cone” and a “hard ridge”, have been discovered in a dihadron correlation function
with a large-pt trigger, while a “soft ridge” is a similar structure seen without a hard trigger. All three can
be viewed as traces left by a moving charge in matter, on top of overall expansion. A puzzle is why those
perturbations are apparently rather well preserved at the time of the fireball freeze-out. We study two possible
solutions: (A) a “wave-splitting” acoustic option and (B) a “metastable electric flux tube” option. In the first case,
we show that rapidly variable speed of sound under certain conditions leads to secondary sound waves, which
are at freeze-out time closer to the original location and have larger intensities than the first wave. In the latter
case, we rely on (dual) magnetohydrodynamics, which also predicts two cones or cylinders of the waves. We
also briefly discuss metastable electric flux tubes in the near-Tc phase and their relation to clustering data.
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I. INTRODUCTION

The issues to be discussed are somewhat similar in
nature to what happened in cosmology in the last decades.
While the average Hubble-like expansion of the Universe
was dramatically confirmed by the discovery of background
radiation more than 40 yr ago, more recent observations of
small-amplitude temperature fluctuations have transformed
cosmology into a much more quantitative science.

Similarly, experimental data obtained in heavy ion colli-
sions at the BNL Relativistic Heavy Ion Collider (RHIC) were
shown to be in very good agreement with the hydrodynamic
description of the “Little Bang.” Especially good results are
obtained in hydrodynamics supplemented by the hadronic
cascades [1–3]. Dissipative effects from viscosity provide
only small corrections, at the few-percent level; see more
in Refs. [4–6]. Except for the rather short time of initial
acceleration, the hydrodynamic solution can actually be rather
well approximated by Hubble flow v(t, r) = Hr, with H ≈
0.08 fm−1 being approximately space and time independent.
If so, the expansion can be approximated by the quite simple
form

r(t) = r(0) exp(Ht), (1.1)

which we will use below.
In the last few years, RHIC experiments have focused more

on two- and three-particle correlations, which revealed a rather
rich phenomenology of correlations. These correlations appear
as the results of certain fluctuations, propagating on top of the
overall Hubble-like expansion. The quite puzzling dynamics
of such perturbations is the subject of this paper. We will turn
to experimental observations in the next section: but before
we do so, let me formulate the main dilemma of this work:
either (A) these perturbations are hydrodynamic in nature,
although propagating a bit differently from what can be naively
expected on the basis of a geometric optics, or (B) they are
not hydrodynamic but include certain extra fields or structures,
affecting their expansion.

In this work, we will examine whether both of those
solutions are viable. Option A—to be referred to as the acoustic
solution—will reveal the creation of secondary waves, induced
by the time-dependent speed of sound. (In fact, this effect was
already noticed in Ref. [7] in connection with conical flow.) As
we will show, such secondary waves are brighter and smaller
in size, as sketched in Fig. 3(c). However, as we will find, it is
not clear whether solution A will be viable quantitatively, as it
requires a rather sharp drop in the speed of sound.

Option B also leads to double cones, now as two com-
ponents of Alfvén waves in a (dually) magnetized medium.
Furthermore, some of them have small or even zero expansion
velocity, and there is the indication of the existence of
stabilized electric flux tubes in the near-Tc temperature interval.
Metastable microscopic flux tubes in the near-Tc region had
also been considered in a different context before by Liao and
myself [8,9] in connection with lattice data on lattice potentials
and charmonium survival. Yet again, although such tubes have
good reasons to exist, the final conclusion on whether they
are robust enough to explain the observed “cone” and two
“ridges” would require a lot more experimental and theoretical
work.

Early stages of heavy ion collisions are believed to be
described by the so-called glasma, a set of random color fields
created by color charges of partons of the two colliding nuclei
at the moment of the collision [10].

For large nuclei, those charges and fields can become large
enough to be treated classically. However as two discs with
charges move away from each other, those classical fields get
smaller and (in a still poorly understood process) rather quickly
create the quark-gluon plasma (QGP), in which the occupation
numbers become O(1).

Perturbative theory of asymptotically hot QGP predicts
perturbative electric screening mass ME ∼ gT from the
one-loop perturbative polarization tensor [11]. However, the
perturbative approach provides no screening of the static
magnetic fields, MM = 0, as in the QED plasma.

0556-2813/2009/80(5)/054908(14) 054908-1 ©2009 The American Physical Society

Wednesday, September 26, 12
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Fig. 9.— The temperature (TT) and temperature-polarization(TE) power spectra for the
seven-year WMAP data set. The solid lines show the predicted spectrum for the best-fit flat

ΛCDM model. The error bars on the data points represent measurement errors while the
shaded region indicates the uncertainty in the model spectrum arising from cosmic variance.
The model parameters are: Ωbh2 = 0.02260 ± 0.00053, Ωch2 = 0.1123 ± 0.0035, ΩΛ =

0.728+0.015
−0.016, ns = 0.963± 0.012, τ = 0.087± 0.014 and σ8 = 0.809± 0.024.
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Fig. 2.— The large-scale redshift-space correlation function of the
SDSS LRG sample. The error bars are from the diagonal elements
of the mock-catalog covariance matrix; however, the points are cor-
related. Note that the vertical axis mixes logarithmic and linear
scalings. The inset shows an expanded view with a linear vertical
axis. The models are Ωmh2 = 0.12 (top, green), 0.13 (red), and
0.14 (bottom with peak, blue), all with Ωbh2 = 0.024 and n = 0.98
and with a mild non-linear prescription folded in. The magenta
line shows a pure CDM model (Ωmh2 = 0.105), which lacks the
acoustic peak. It is interesting to note that although the data ap-
pears higher than the models, the covariance between the points is
soft as regards overall shifts in ξ(s). Subtracting 0.002 from ξ(s)
at all scales makes the plot look cosmetically perfect, but changes
the best-fit χ2 by only 1.3. The bump at 100h−1 Mpc scale, on the
other hand, is statistically significant.

two samples on large scales is modest, only 15%. We make
a simple parameterization of the bias as a function of red-
shift and then compute b2 averaged as a function of scale
over the pair counts in the random catalog. The bias varies
by less than 0.5% as a function of scale, and so we conclude
that there is no effect of a possible correlation of scale with
redshift. This test also shows that the mean redshift as a
function of scale changes so little that variations in the
clustering amplitude at fixed luminosity as a function of
redshift are negligible.

3.2. Tests for systematic errors

We have performed a number of tests searching for po-
tential systematic errors in our correlation function. First,
we have tested that the radial selection function is not in-
troducing features into the correlation function. Our selec-
tion function involves smoothing the observed histogram
with a box-car smoothing of width ∆z = 0.07. This cor-
responds to reducing power in the purely radial mode at
k = 0.03h Mpc−1 by 50%. Purely radial power at k = 0.04
(0.02)h Mpc−1 is reduced by 13% (86%). The effect of this
suppression is negligible, only 5× 10−4 (10−4) on the cor-
relation function at the 30 (100) h−1 Mpc scale. Simply
put, purely radial modes are a small fraction of the total
at these wavelengths. We find that an alternative radial
selection function, in which the redshifts of the random

Fig. 3.— As Figure 2, but plotting the correlation function times
s2. This shows the variation of the peak at 20h−1 Mpc scales that is
controlled by the redshift of equality (and hence by Ωmh2). Vary-
ing Ωmh2 alters the amount of large-to-small scale correlation, but
boosting the large-scale correlations too much causes an inconsis-
tency at 30h−1 Mpc. The pure CDM model (magenta) is actually
close to the best-fit due to the data points on intermediate scales.

catalog are simply picked randomly from the observed red-
shifts, produces a negligible change in the correlation func-
tion. This of course corresponds to complete suppression
of purely radial modes.

The selection of LRGs is highly sensitive to errors in the
photometric calibration of the g, r, and i bands (Eisenstein
et al. 2001). We assess these by making a detailed model
of the distribution in color and luminosity of the sample,
including photometric errors, and then computing the vari-
ation of the number of galaxies accepted at each redshift
with small variations in the LRG sample cuts. A 1% shift
in the r − i color makes a 8-10% change in number den-
sity; a 1% shift in the g − r color makes a 5% changes in
number density out to z = 0.41, dropping thereafter; and
a 1% change in all magnitudes together changes the num-
ber density by 2% out to z = 0.36, increasing to 3.6% at
z = 0.47. These variations are consistent with the changes
in the observed redshift distribution when we move the
selection boundaries to restrict the sample. Such photo-
metric calibration errors would cause anomalies in the cor-
relation function as the square of the number density vari-
ations, as this noise source is uncorrelated with the true
sky distribution of LRGs.

Assessments of calibration errors based on the color of
the stellar locus find only 1% scatter in g, r, and i (Ivezić
et al. 2004), which would translate to about 0.02 in the
correlation function. However, the situation is more favor-
able, because the coherence scale of the calibration errors
is limited by the fact that the SDSS is calibrated in regions
about 0.6◦ wide and up to 15◦ long. This means that there
are 20 independent calibrations being applied to a given
6◦ (100h−1 Mpc) radius circular region. Moreover, some
of the calibration errors are even more localized, being
caused by small mischaracterizations of the point spread
function and errors in the flat field vectors early in the
survey (Stoughton et al. 2002). Such errors will average
down on larger scales even more quickly.

The photometric calibration of the SDSS has evolved
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The peaks are at the same angles   +- 1 
rad (as I got) relative to the perturbation 

angle, but +-2 rad in correlations 
One tube model

MAIN RESULT: single particle angular distribution has TWO

PEAKS separated by ∆phi ∼ 2
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CONSEQUENCE: two particle angular distribution has three

peaks
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It is like correlating 
Two waves in US and 
Chili to observe tsunami 
In Japan 

Correlators and 
statistics: 
109 events 
106 pairs/event 

Radial flow enhances the fireball surface: spectra are 
blue shifted toward detection with v about 0.8 c
So we should see two “horns”

sound horizon
tf cs =6 fm

Pictures due to
F.Grassi et al
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S.Gubser, arXiv:1006.0006  
found nice solution for nonlinear relativistic  axially 

symmetric explosion of conformal matter 6

Working in the (⌥, ⇤, r,�) coordinates with the metric

ds2 = �d⌥2 + ⌥2d⇤2 + dr2 + r2d�2, (3.2)

and assuming no dependence on the rapidity ⇤ and az-
imuthal angle �, the 4-velocity can be parameterized by
only one function

uµ = (� cosh⇧(⌥, r), 0, sinh⇧(⌥, r), 0) (3.3)

Omitting the details from [14], the solution for the ve-
locity and the energy density is

v⇤ = tanh⇧(⌥, r) =
⇤

2q2⌥r

1 + q2⌥2 + q2r2

⌅
(3.4)

⇥ =
⇥̂0(2q)8/3

⌥4/3 (1 + 2q2(⌥2 + r2) + q4(⌥2 � r2)2)4/3
(3.5)

where ⇥̂0 is some normalization parameter.
In [15] Gubser and Yarom re-derived the same solution

by going into the co-moving frame. In order to do so they
rescaled the metric

ds2 = ⌥2dŝ2 (3.6)

and performed a coordinate transformation from the ⌥, r
to a new set ⌃, ⌅ given by:

sinh ⌃ = �1� q2⌥2 + q2r2

2q⌥
(3.7)

tan ⌅ =
2qr

1 + q2⌥2 � q2r2
(3.8)

In the new coordinates the rescaled metric reads:

dŝ2 = �d⌃2 + cosh2 ⌃
�
d⌅2 + sin2 ⌅d�2

⇥
+ d⇤2 (3.9)

and we will use ⌃ as the “new time” coordinate and ⌅
as a new “space” coordinate. In the new coordinates the
fluid is at rest, so the velocity field has only nonzero u⇤.

The relation between the velocity in Minkowski space
in the (⌥, r,�, ⇤) coordinates and the one in the rescaled
metric in (⌃, ⌅,�, ⇤) coordinates corresponds to:

uµ = ⌥
 x̂⇥

 x̂µ
û⇥ , (3.10)

while the energy density transforms as: ⇥ = ⌥�4⇥̂.
The temperature (in the rescaled frame, T̂ = ⌥f1/4

⇥ T ,
with f⇥ = ⇥/T 4 = 11 as in [14]) is now dependent only
on the new time ⌃, in the case with nonzero viscosity the
solution is

T̂ =
T̂0

(cosh �)2/3
+

H0 sinh3 �

9(cosh �)2/3 2F1

„
3

2
,
7

6
;
5

2
,� sinh2 �

«

(3.11)

where H0 is a dimensionless constant made out of the
shear viscosity and the temperature, ⇤ = H0T 3 and 2F1

is the hypergeometric function. In the inviscid case the
solution is just the first term of expression (3.11), and
of course it also conserves the entropy in this case. The
picture of the explosion is obtained by transformation
from this expression back to ⌥, r coordinates.

B. Perturbations of the Gubser flow

Small perturbations to the Gubser flow obey linearized
equations which have also been derived in [15]. We start
with the zero viscosity case, so that the background tem-
perature (now to be called T0) will be given by just the
first term in (3.11). The perturbations over the previous
solution are defined by

T̂ = T̂0(1 + �) (3.12)
uµ = u0 µ + u1µ (3.13)

with

û0 µ = (�1, 0, 0, 0) (3.14)
û1µ = (0, u�(⌃, ⌅,�), u⌅(⌃, ⌅,�), 0) (3.15)
� = �(⌃, ⌅,�) (3.16)

The careful reader will notice here, that although general
perturbations should not have any symmetries of the ze-
roth solution, we have not listed rapidity among the vari-
ables. Indeed, we only consider the perturbations which
are rapidity-independent. The reason for that is that the
initial state perturbations are initiated in the transverse
plane but rapidity-independent, so that the waves they
would induce also propagate in the transverse plane only.

Plugging expressions (3.12),(3.13) into the hydrody-
namic equations and only keeping linear terms in the
perturbation, one can get a system of coupled 1-st order
di�erential equations. Furthermore, if one ignores the
viscosity terms, one may exclude velocity and get the
following (second order) closed equation for the temper-
ature perturbation:

 2�

 ⌃2
� 1

3 cosh2 ⌃

⇤
 2�

 ⌅2
+

1
tan ⌅

 �

 ⌅
+

1
sin2 ⌅

 2�

 �2

⌅

+
4
3

tanh ⌃
 �

 ⌃
= 0 (3.17)

As we will show, it has a number of remarkable proper-
ties.

C. The short-wavelength approximation for the
sound waves on top of the Gubser flow

Before we proceed to the exact solution of this equa-
tion, let us follow the procedure described in section IIB
and study the solution to equation (3.17) in the short
wavelength approximation. We start by looking for a
factorized solution of the form:

� = ei(f⇥(⇤)�f�(�)�f⇤(⌅))F⇤(⌃)F�(⌅)F⌅(�) (3.18)

where fi >> 1, such that the derivatives taken over the
exponential are dominant. In this way, we study the
equation separating it in di�erent equations depending
on which power of the derivatives over the exponent they

Kappa is the 
transverse 
rapidity 

q is a parameter 
fixing the overall size 
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3

where the separation of variables constant k, the “wave
vector”, is assumed to be large. When C1x = 1,

⌃
C1t =

cs = const we have a function of x� cst, the usual prop-
agating wave.

The amplitude A should be found from the second ap-
proximation, the terms of the order 1/⇤. One may again
get an explicit solution assuming the variables can be sep-
arated. Looking for the amplitude in a factorizable form
A = At(t)Ax(x) one can see that the first three terms
can be only dependent on t, provided C2 depends on time
only. The last three O(1/⇤) terms would be factorizable
into C1t(t) times a function of x if C3 = C1t(t) ⇥ C3x(x).
If so, the solution for both parts of the amplitudes are

At(t) = exp

⇤ t

0
dt1[�

⌅
C1t(t1)�

Ċ1t(t1)
4C1t(t1)

� C2t(t1)/2]

Ax(x) = exp

⇤ x

0
dx1[�

�⌅
C1x(x1)

+
C �

1x(x1))
4C1x(x1)

+
C3x(x1))
2C1x(x1)

] (2.5)

New separation-of-variable constant � formally appears
here, but it does not generate anything new in respect to
what was already included in the phase, so it can safely
be put to zero.

Familiar examples of waves are e.g. the spherical and
conical waves, in which case the variables can be sepa-
rated . Indeed, when the spatial part of the equation is
d-dimensional Laplacian, one has

C1 =
1
c2
s

, C2 = 0, C3 =
d� 1

x

1
c2
s

(2.6)

and the corresponding amplitude decays with distance as

A ⇤ 1
x

d�1
2

(2.7)

(Note that for d=3 it is a very familiar result, and for d=2
it is an asymptotics of the cylindrical Bessel functions.)

As the reader will see later, the sound on top of Gub-
ser’s flow can also be shown to have an amplitude depend-
ing one only one variable, ⌥, in comoving coordinates,
which however is a non-factorizable funciton of proper
time � and r. Therefore, without introduction of these
coordinates, one would not be able to solve the equation
for the amplitude in such a simple factorized form.

In our problem the reason we can use such an approxi-
mation is the assumed locality of the initial perturbation.
This means that the spacial scale of the initial perturba-
tion (and thus the initial width of the propagating circu-
lar wave) is much smaller than the fireball dimensions

l ⌅ R (2.8)

It will also mean that locally the sound wave is close to
the plane sound wave

⇥T ⇤ exp[ik(⌦n⌦x� cst)] (2.9)

with large wave vector kR⇧ 1.
Let us show how this approximation works in the case

of Gubser flow. Step one is to look at second derivatives
only, as those would produce terms of the second order
in k and thus to be the leading ones.

Step two is to get the wave amplitude from cancelling
among themselves the terms with the first power of large
exponent

III. PERTURBATIONS ON TOP OF THE
GUBSER FLOW

A. Summary of the Gubser flow

Gubser flow [7, 8] is a generalization of Bjorken flow
that, while keeping the boost-invariance and the rota-
tional invariance in the transverse plane, replaces the
translational invariance in the transverse plane of the
Bjorken flow by symmetry under special conformal trans-
formations. Therefore, the matter is required to be con-
formal, with the EOS

⇤ = 3p ⇤ T 4 (3.1)

and thus the speed of sound cs = 1/
⌃

3. The solution has
one dimensional parameter q which has units of inverse
length, via which the finite size of the nuclei is taken into
account (and also the velocity acquires a radial compo-
nent). Working in the (�, ⌅, r, ) coordinates, where the
metric is:

ds2 = �d�2 + �2d⌅2 + dr2 + r2d 2, (3.2)

the 4-velocity profile is given by

uµ = (� cosh⌃(�, r), 0, sinh⌃(�, r), 0)(3.3)

v⇥ = tanh⌃ =
�

2q2�r

1 + q2�2 + q2r2

⇥
(3.4)

add energy density

The hydrodynamic equations in these coordinates were
solved by Gubser in [7] for both the non-viscous and the
viscous case. Later in [8] Gubser and Yarom re-derived
those solutions by going into the comoving frame. In
order to do so they have rescaled the metric by the proper
time

ds2 = �2dŝ2 (3.5)

and performed another coordinate transformation given
by:

sinh ⌥ = �1� q2�2 + q2r2

2q�
(3.6)

tan ⇧ =
2qr

1 + q2�2 � q2r2
(3.7)

4

Note how the proper time and the radial components
mix together, while both angular coordinates ⌥ and ⇤ re-
main unchangedIn the new coordinates the rescaled met-
ric reads:

dŝ2 = �d⇧2 + cosh2 ⇧
�
d⌅2 + sin2 ⌅d⌥2

⇥
+ d⇤2 (3.8)

where ⇧ is the time coordinate and ⌅ is a radial coordi-
nate.

In the new coordinates the fluid is at rest, or rather
moving together with an expanding geometry, such that
the velocity field is given by û⇤ = �1, with all other
components zero.

The relation between the velocity in Minkowsky space
in the (⌃, r, ⌥, ⇤) coordinates and the one in the rescaled
metric in (⇧, ⌅, ⌥, ⇤) coordinates corresponds to:

uµ = ⌃
�x̂⇥

�x̂µ
û⇥ , (3.9)

while the energy density transforms as: ⇥ = ⌃�4⇥̂.
The solution to the hydrodynamic equations is now

dependent on new time ⇧, in the viscous case it is

T̂ =
T̂0

(cosh �)2/3
(3.10)

�H0 tanh �

„
1� (cosh �)1/3

2F1

„
1

2
,
1

6
;
3

2
,� sinh2 �

««

where H0 is a dimensionless constant made out of the
shear viscosity and the temperature, ⇤ = H0T 3 and 2F1

is the hypergeometric function. In the inviscid case the
solution is just the first term of expression (3.11). On top
of this background solution there can be bumps due to
the initial fluctuations of the collision and in what follows
we will study these perturbations and their evolution.

B. Perturbations on the Gubser flow

In this section we study linear perturbations to the
Gubser flow following the work by Gubser and Yarom in
[8]. We will only look at the non-viscous case, such that
the background temperature will be given by the first
term in (3.11). We want to look for sound waves on top
of the background, so we consider linear perturbations
over the previous solution:

T = T0 + T1 = T0(1 + �) (3.11)
uµ = u0µ + u1µ (3.12)

with

u0µ = (�1, 0, 0, 0) (3.13)
u1µ = (0, u�(⇧, ⌅, ⌥, ⇤), u⌅(⇧, ⌅,⌥, ⇤), 0) (3.14)

� = �(⇧, ⌅, ⌥) (3.15)

where we have assumed that the perturbations remain
rapidity-independent, they are initiated and propagate
in the transverse plane. In principle, we could have an

⇤ dependence both in the velocity and in the tempera-
ture, but for simplicity and to preserve boost invariance
and study cylindrical waves, we only consider ⇧, ⌅ and
⌥ dependence. Plugging expressions (3.12) into the hy-
drodynamic equations and only keeping terms which are
linear in the perturbation, we find the following second
order equation for the temperature:

�2�

�⇧2
� 1

3 cosh2 ⇧

⇤
�2�

�⌅2
+

1
tan ⌅

��

�⌅
+

1
sin2 ⌅

�2�

�⌥2

⌅

+
4
3

tanh ⇧
��

�⇧
= 0 (3.16)

C. The short-wavelength approximation and
variable separation for Gubser flow

In this section we follow the procedure described in
section II and study the solution to equation (3.16) in the
short wavelength approximation. We start by assuming
a solution of the form:

� = ei(f⇥(⇤)�f�(�)�f⇤(⌅))F⇤(⇧)F�(⌅)F⌅(⌥) (3.17)

where fi >> 1, such that the derivatives taken over the
exponential are dominant. In this way, we study the
equation separating it in di�erent equations depending
on which power of the derivatives over the exponent they
have. The first step is to look only at the second deriva-
tives because, since they produce terms of second order
in the exponent, they are the leading ones. In this way
we find:

f⇤(⇧) = ± 2⇥
3
k arctan e⇤ + A (3.18)

f�(⌅) = ±
⇧ ⌃

k2 � m2

sin2 ⌅
+ B (3.19)

f⌅(⌥) = ±m⌥ + C (3.20)

The integral in (3.19) can be solved, but it gives a cum-
bersome result. So in what follows we will assume no ⌥
dependence just to get an idea of the result. If we as-
sume that there is no ⌥ dependence, the functions in the
exponent reduce to:

f⇤(⇧) = ± 2⇥
3
k arctan e⇤ + A (3.21)

f�(⌅) = ±k⌅ + B (3.22)
(3.23)

The function f⇤(rho) is almost linear in ⇧ in the region
that we are interested in studying (�2 � ⇧ � 1), so we
expect to see wave propagation in this region.

Now that we have found the functions in the expo-
nent we look for the wave amplitude by cancelling among
themselves the terms with the first power of the large ex-
ponent, and by doing this we find the amplitude functions
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to be:

F⇤(⇧) ⇥ 1
(cosh ⇧)1/6

(3.24)

F�(⇥) ⇥
1⌅
sin ⇧

(3.25)

D. The exact separation of variables for Gubser
flow

We have seen that in the short wavelength approxi-
mation we found a wave-like solution to equation 3.16,
but now we would like to look for the exact solution,
which can be found by using variable separation such
that �(⇧, ⇥, ⌃) = R(⇧)⇥(⇥)⇤(⇥), then

R(⇥) =
C1P

2/3

� 1
2+ 1

6
⇥

12�+1
(tanh ⇥) + C2Q

2/3

� 1
2+ 1

6
⇥

12�+1
(tanh ⇥)

(cosh ⇥)2/3

�(�) = C3P
m
l (cos �) + C4Q

m
l (cos �)

⇥(⇤) = C5e
im⇥ + C6e

�im⇥ (3.26)

where ⇤ = l(l + 1) and P and Q are associated Legendre
polynomials. The part of the solution depending on ⇥ and
⌃ can be combined in order to form spherical harmonics
Ylm(⇥,⌃), such that �(⇧, ⇥,⌃) ⇤ Rl(⇧)Ylm(⇥,⌃).

It is interesting to explore the asymptotic behavior of
the Legendre functions when l >> 1 that is given by [9]:

Pm
l (cos ⇥) =

2⌅
⌅

�(l + m + 1)
�(l + 3/2)

cos ((l + 1/2)⌃� ⇥
4 + m⇥

2 )
⌅

2 sin ⇥

Qm
l (cos ⇥) =

⌅
⌅

�(l + m + 1)
�(l + 3/2)

cos ((l + 1/2)⌃ + ⇥
4 + m⇥

2 )
⌅

2 sin ⇥
(3.27)

These expressions show that for large l the solution
presents oscillatory behavior in ⇥ with an amplitude given
by 1⇥

sin �
, which is the same that we obtained in the short-

wavelength approximation for F�(⇥) (eq.3.25). Now we
look into the ⇧-dependent part of the solution in the large
l limit we have that the Legendre polynomials as a func-
tion of tanh ⇧ correspond to:

P m
l (tanh ⇤) =

r
2

⇥

�(l + m + 1)

�(l + 3/2)

cos

„„
l +

1

2

«
arccos (tanh ⇤)�

⇥

4
+

m⇥

2

«p
cosh ⇤

Qm
l (tanh ⇤) =

r
⇥

2

�(l + m + 1)

�(l + 3/2)

cos

„„
l +

1

2

«
arccos (tanh ⇤) +

⇥

4
+

m⇥

2

«p
cosh ⇤

(3.28)

Again we see an oscillatory behavior and a wave am-
plitude. In this case the amplitude is given by

⌅
cosh ⇧

and if we divide this by (cosh ⇧)2/3 as we have in the
exact solution (3.26) we get an amplitude for the wave
of 1

(cosh ⇤)1/6 , which is the same as we got in 3.24 for the
short wavelength approximation.

So we have checked that for large l (or equivalently
large k) �(⇧, ⇥, ⌃), and therefore T̂1, behaves like a wave,
so if at some ⇧ = ⇧0 we put a perturbation we expect
sound to propagate. We will study this by putting a
gaussian perturbation on top of the background at ⇧0,
given by:

T̂1(⇧0, ⇥, ⌃) ⇤ e�
�2+�2

0�2��0 cos (⇥�⇥0)
2s2 (3.29)

and we assume that at the initial time no momentum is
put, only energy so the other initial condition that we
have is:

u� = 0
u⌅ = 0 (3.30)

but from [8] we have:

ui = u(⇧)⌥iYlm(⇥,⌃)

u(⇧) =
3 cosh2 ⇧

l(l + 1)
d�⇤

d⇧
(3.31)

where i = ⇥,⌃, so it is enough to put

⌥�

⌥⇧
|⇤=⇤0 = 0 (3.32)

The general solution for linear perturbations is

T̂1(⇤, �, ⌅) =
X

l

m=lX

m=�l

Rl(⇤)clmYlm(�, ⌅) (3.33)

Rl(⇤) =

AlP
2/3

� 1
2 + 1

6
⇥

12l(l+1)+1
(tanh ⇤) + BlQ

2/3

� 1
2 + 1

6
⇥

12l(l+1)+1
(tanh ⇤)

(cosh ⇤)4/3

(3.34)

where clm, Al and Bl are constants that can be deter-
mined using the initial conditions (3.29) and (3.32). With
Al and Bl determined, the ⇧-dependent part of the tem-
perature is:

Rl(⇧) =
�

cosh ⇧0

cosh ⇧

⇥2/3 dql

d⇤ |⇤0pl(⇧)� dpl

d⇤ |⇤0ql(⇧)
dql

d⇤ |⇤0pl(⇧0)� dpl

d⇤ |⇤0ql(⇧0)

(3.35)

with

pl(⇧) =
P 2/3

� 1
2+ 1

6

⌅
12l(l+1)+1

(tanh ⇧)

(cosh ⇧)2/3
(3.36)

ql(⇧) =
Q2/3

� 1
2+ 1

6

⌅
12l(l+1)+1

(tanh ⇧)

(cosh ⇧)2/3
(3.37)

the solutions to the ⇧-dependent part of the equation 3.16
for �. The denominator of the of the right term of Rl(⇧)
corresponds to the Wronskian of the functions pl(⇧) and
ql(⇧) evaluated in ⇧0.Since the Legendre polynomials P
and Q are linearly independent, the Wronskian is always

Comoving coordinates with Gubser flow: 
Gubser and Yarom, arXiv:1012.1314 

The Fate of the Initial State Fluctuations in Heavy Ion Collisions.
III The Second Act of Hydrodynamics
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Hydrodynamical description of the “Little Bang” in heavy ion collisions is surprisingly successful,
mostly due to the very small viscosity of the Quark-Gluon plasma. In this paper we systematically
study the propagation of small perturbations, also treated hydrodynamically. We start with a num-
ber of known techniques allowing for analytic calculation of the propagation of small perturbations
on top of the expanding fireball. The simplest approximation is the “geometric acoustics”, which
substitutes the wave equation by mechanical equations for the propagating “phonons”. Next we
turn to the case in which variables can be separated, in which case one can obtain not only the
eikonal phases but also amplitudes of the perturbation. Finally, we focus on the so called Gubser
flow, a particular conformal analytic solution for the fireball expansion, on top of which one can
derive closed equations for small perturbations. Perfect hydrodynamics allows all variables to be
separated and all equations to be solved in terms of known special functions. We can thus collect
the analytical expression for all the harmonics and reconstruct the complete Green function of the
problem. In the viscous case the equations still allow for variable separation, but one of the equations
has to be solved numerically. We still can collect all the harmonics and show real-time perturbation
evolution, observing viscosity-induced changes in the spectra and the correlation functions of sec-
ondaries. We end up by comparing the calculated angular shape of the correlation function to the
STAR experimental data, and find, for su�ciently large viscosity, a surprisingly good agreement.

PACS numbers:

I. INTRODUCTION

Since it is the third paper of the series devoted to
the propagation of perturbations on top of the “Little
Bang”, it does not need a detailed Introduction. Let us
only briefly remind the main physics of the phenomena
in question, and then mention where the reader can find
important earlier works on the subject.

Initial state perturbations of an “average fireball”,
which occur on event-by-event basis, lead to divergent
sound waves, similar to the circles from a stone thrown
into a pond. The sound velocity is � 1/2 and the time
till freezeout �FO � 2R (where R is the nuclear size,
about 6 fm for Au nuclei used in the experiment), thus
the “sound horizon” (the maximal radius of the circles)
reaches Hs � R. In terms of the angular variables
we use, it means a response at relatively large angles,
O(±1 radian), from the perturbation. The strong radial
explosion of the fireball dramatically enhances the con-
trast, making small deviations of the freezeout surface
easily observable experimentally, provided the transverse
momentum of the particles are tuned into the appropri-
ate range. The shape of the hydro response to an initial
point perturbation (the Green function) is quite nontriv-
ial, and we show that for appropriate values of the vis-
cosity it reproduces the shapes observed experimentally
quite well. Thus we will conclude that a sound propaga-
tion over distance comparable to the fireball radius � R
have in fact been experimentally observed.

Outlining the paper’s context, we now go into a bit
more detail over the brief history of the “second act of

hydro”. Sound propagation on top of the expanding fire-
ball was first considered by Casalderrey-Solana and one
of us (ES) in [1]. The fireball expansion was modelled
by an Universe expansion using the Friedmann-Lemetre-
Robertson-Walker metrics, and the specific phenomena
discussed in it was the e�ect of the variable speed of
sound (due to the QCD phase transition) on sound prop-
agation. Its main result was the appearance of backward-
moving or convergent spherical/conical waves, together
with the usual divergent ones.
A qualitative picture of “circles” resulting from point-

like initial-state perturbations, reaching the “sound hori-
zon” radius, were first introduced in the first paper of this
series [2]. It has correctly predicted the “double-hump”
shape of the angular distribution, with maxima identi-
fied with the two crossings of the circle with the fireball
boundaries, but failed to carry it further into the two-
particle correlations functions. The “circle” phenomenon
has also been found by the Brazilian group, in their (zero
viscosity) numerical studies of “event-by-event hydrody-
namics” [3]. This group however went further and calcu-
lated the two-body correlators, finding their characteris-
tic three-maxima structure. The details of such structure
in our (viscous) solution will be compared to the experi-
mental data at the end of this paper.
A general setting of the problem, including the iden-

tification of the two basic scales of the problem, the so
called “sound horizon” and “viscous horizon”, has been
made in the second paper of the series [4], in which we
also studied in detail the perturbations using the geomet-
ric Glauber model. Similar ideas have also been proposed
by Mocsy and Sorensen in [5, 6].
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O(±1 radian), from the perturbation. The strong radial
explosion of the fireball dramatically enhances the con-
trast, making small deviations of the freezeout surface
easily observable experimentally, provided the transverse
momentum of the particles are tuned into the appropri-
ate range. The shape of the hydro response to an initial
point perturbation (the Green function) is quite nontriv-
ial, and we show that for appropriate values of the vis-
cosity it reproduces the shapes observed experimentally
quite well. Thus we will conclude that a sound propaga-
tion over distance comparable to the fireball radius � R
have in fact been experimentally observed.

Outlining the paper’s context, we now go into a bit
more detail over the brief history of the “second act of

hydro”. Sound propagation on top of the expanding fire-
ball was first considered by Casalderrey-Solana and one
of us (ES) in [1]. The fireball expansion was modelled
by an Universe expansion using the Friedmann-Lemetre-
Robertson-Walker metrics, and the specific phenomena
discussed in it was the e�ect of the variable speed of
sound (due to the QCD phase transition) on sound prop-
agation. Its main result was the appearance of backward-
moving or convergent spherical/conical waves, together
with the usual divergent ones.
A qualitative picture of “circles” resulting from point-

like initial-state perturbations, reaching the “sound hori-
zon” radius, were first introduced in the first paper of this
series [2]. It has correctly predicted the “double-hump”
shape of the angular distribution, with maxima identi-
fied with the two crossings of the circle with the fireball
boundaries, but failed to carry it further into the two-
particle correlations functions. The “circle” phenomenon
has also been found by the Brazilian group, in their (zero
viscosity) numerical studies of “event-by-event hydrody-
namics” [3]. This group however went further and calcu-
lated the two-body correlators, finding their characteris-
tic three-maxima structure. The details of such structure
in our (viscous) solution will be compared to the experi-
mental data at the end of this paper.
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harmonics l=1..10, Temperature 
perturbation and velocity 

 lhs (rho=-2) is initiation time and FO time is around zero 
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Left:4 pi eta/s=0, 2 
Note shape change 
 
ALICE central  1% correlators 
Note shape agreement 
No parameters, just Green 
Function from a delta function 
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The power spectrum is very sensitive to 
viscosity, and it has acoustic minima/

maxima (at m=7,12 and m=9) 
perturbation initial size is 0.7 fm, viscosity eta/s=0,0.08,0.13,0.16 
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The summary of e-by-e hydro:
Luzum: QM2012

EXTRACTING SHEAR VISCOSITY RECENT RESULTS

⌘/s FROM ULTRA-CENTRAL COLLISIONS
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note that eta/s fit 0.15 is the same as we got a year ago

none of the models produce correct shape of the angular 
correlator,  no peak at the 3ed harmonic

all of those are sum of many O(10) sources => small perturbations,
e-by-e hydro hardly justified
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So what? Why is hydro�s success for the 
Little Bang so exciting? 

• True that already in the 19th century sound vibrations in the bulk 
(as well as of drops and bubbles) have been well developed  
(Lord Rayleigh, …) 
 
• But, those objects are macroscopic still have 10^20 molecules… 

• Little Bang has about 10^3 particles (per unit rapidity) or 10 of 
them per dimension. So the first application of hydro was 
surprising: only astonishingly small viscosity saved it… 

• And now we speak about the 10th harmonics! How a volume cell 
with O(1) particles can act as a liquid? 
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coherence and 
nonlinearities
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Many-particle correlations reveal phases!

|vn|2

P.Staig, ES arXiv:1008.3139
Bhalerao, Luzum, Ollitrault PRC 84 034910 (2011)

Teaney, Yan PRC 83, 064904 (2011) 

kX

i=1

ni = 0

• 2-body correlation function 
gives          ,so no phase 
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non-central collisions (ALICE data,QM12) 
vn(b) and 1+2=3 and some 5-particle examples

8 

What is the p.d.f. of flow 
fluctuations? 

 Established experimentally that 𝑣௡{4} ~ 𝑣௡{6} => p.d.f. of 
e-b-e flow fluctuations must have non-negligible 
3rd/higher moments (when compared to the 1st/2nd 
moment) 
 

 

 Bessel-Gaussian function is an example of p.d.f. with 
𝑣௡ 4  = 𝑣௡ 6  

 

Out of these 3 ingredients
one can make many combinations

Even v2 is small, and it has a 
characteristic b-dependence

v1, v3 ⇠ 0.01;

v2 ⇠ 0.1
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nonlinearity at large pt from Cooper-Fry
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III. MULTIPARTICLE CORRELATIONS

Angular momenta should be all added to zero.
Let us discuss the 3 and 5-particle ALICE correlations

[7] in more detail.
Irreducable and reducable sums: example 3 particles

K3 =< cos(3�a � 2�b � �c) > is irreducable. But
a correlation of 5 particles called a,b,c,d,e of the type
K5 =< cos(3�a + 2�b � 2�c � 2�d � 1�e) > is reduca-
ble because it can contain the previous one and simple
elliptic flow correlation from two other particles.

< cos(3�a + 2�b � 2�c � 2�d � 1�e) > |c
= cos(3�a + 2�b � 2�c � 2�d � 1�e) >

�2 < cos(3�a � 2�b � �c) >< cos(2�d � 2�e) > (5)

Crude estimate can be made by using measured vn

in the place of ✏n (this assumes that hydro-determined
ratios vn/✏n = O(1): one can do better, especially in
respect to the signs.) As an example, one can do order-
of-magnitude estimate of those two examples at a par-
ticular centrality, say 50%. The measured values are
v1 = 210�2, v2 = 0.1, v3 = 1.710�2. Using those one
get

K3 ⇠ v1v2v3 ⇠ 3.410�5 (6)

K5 ⇠ v1v
3
2v3 = v2

2K3 ⇠ 3.410�7 (7)

which are indeed both of the correct order of magnitude.
One can refine this comparison, by addressing central-

ity dependence of all correlators like K3, K5. While the
v2(b) has a very specific and known dependence on cen-
trality, the others v1, v3, ... which come from initial state
fluctuations have rather flat centrality dependence.

Generically, by studying the centrality dependence
near central collisions one can perhaps identify the ir-
reducable and reducable contributions in many cases.

IV. HARMONIC INTERACTIONS AT HIGH pt

The principal di↵erence between the second harmonics
and the rest of them is increased, in a rather dramatic
way, in the multibody correlations with one (or more)
particle involved has “high” pt = 2..4 GeV . Indeed, one
may argue that in this case one can identify uniquely the
place where the non-linear interaction of harmonics takes
place: it is in the exponent of the Cooper-Fry formula.

The crucial (but well known by now) observation is
that the smallness of v2 ⇠ 0.1 ⌧ 1 can be compensated
by large factor pt/Tf � 1. While in the examples of
the previous section, integrated over momenta, we have
seen that higher powers of v2 are suppressed but still
observable, at “high” pt the terms with higher powers of
their product (v2p4/Tf )k are not suppressed at all.

Example K3 (slide 11 of [7]) or simply the v1 in which
the transverse momentum of pa is large. In the exponent

exp [�(1/Tf )pµuµ] (8)

the velocity is a sum of all harmonics such as uµ = u0
µ +

u1
µ + u2

µ + u3
µ. Thus there is the direct first harmonics

and the nonlinear terms with the same �-dependence

v1 = O(✏1pt) + O(✏2✏3p2
t ) (9)

which can be calculated and compared to observed pt

dependence
more interesting examples:

v5 ⇠ O(✏5pt) + O(✏3✏2p2
t ) (10)

v6 ⇠ O(✏6pt) + O(✏23p
2
t ) (11)
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What is the relation between 
symmetry planes Ψ௡? 

14 
 Observe non-zero genuine 5-particle correlation 
 Correlation strength is related to three-plane correlations 

the negative signs have been explained
already in Staig, ES arXiv:1008.3139
where phase correlation has been 
noticed in Glauber

⇠1 � 3⇠3 ⇡ ⇡, 2⇠2 ⇡ ⇡

!< cos(⇠1 � 3⇠3 � 2⇠2) >⇡ 1, > 0
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New idea: shocks/sounds from Rayleigh collapse of the QGP bubbles

QGP

H phase
phase sparation in the ``mixed phase”
=> surface tension makes bubbles spherical
=> as T<Tc the QGP pressure is less than pH =>
Rayleigh collapse => energy of the bubble goes into
the outgoing shock

The “Mini-Bangs” as Signals of the QCD Phase Transition

Edward Shuryak and Pilar Staig1

1
Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794, USA.

sound from near Tc region in rapidity direction

I. INTRODUCTION

Production of Quark-Gluon Plasma (QGP) has been a
major goal of heavy-ion collision program at RHIC and
LHC. The observed explosion, often called “The Little
Bang” due to some parallels to the cosmological Bing
Bang, is quantitatively described by hydrodynamics. In
particular, it predicted quite accurately the radial and
elliptic flows a decade ago [? ]. Its important component
was the equation of state (EOS) including a transition
between the QGP and hadronic phases. Characteristic
“softnes” of the intermediate “mixed” phase of the pro-
cess is considered to be an indirect signature of the QCD
phase transition.

Looking for more direct signatures of the transition,
one thought about critical fluctuations. A relation be-
tween the event-by-event spread of certain observables
and thermodynamical fluctuations has been first dis-
cussed in [1], in which it was pointed out that in the near-
Tc region they are enhanced. It was then proposed to
look at the event-by-event fluctuations near the second-
order critical point [7]. This idea were discussed in many
subsequent works and was the motivation of the down-
ward energy scan program at RHIC: yet up to now the
observed fluctuations (in pt, the charge and flavor e.g.
K/⇡ ratios etc) basically are those in the hadronic res-
onance gas at freezeout. Either the critical point does
not exist in that region, or the equilibration processes
have so short relaxation timescale that all memory of the
transition passed is quickly erased.

There are many sources of the event-by-event fluctua-
tions unrelated to the phase transition. The fluctuations
of the initial conditions should result in event-by-event
fluctuations of the elliptic flow [2] and of the third and
higher harmonics [3]. The two-particle correlation func-
tions in azimuthal angle � have been extended both at
RHIC and LHC, revealing significant magnitude of the
harmonics < v2

n > for n = 2� 6 [? ]. These results con-
firm elastic properties of the matter produced and further
constraint the magnitude of its viscosities.

(There are two opposing models on the origin of these
harmonics: random Gaussian noise from the event shapes
[3] versus the “coherent sounds circles” [4–6]. The lat-
ter model get fluctuations from quasi-local perturbations,
and thus directly relates the observed power spectrum to
the sound horizon scale. The main distinction between
those is the coherence between the harmonics which can
be measured by 3 (or more) particle correlations for cen-
tral collisions [5]. )

In this paper we propose new strategy to look for crit-

ical event-by-event fluctuations, using the sound they
emit. In order for it to succeed, one needs elas-
tic/hydrodinamical properties of matter to be main-
tained for some time, between their origination and the
final (kinetic) freezeout. This can be motivated as fol-
lows: The stronger the interaction in the media, the more
it prevents (quasi)particles from propagating, the more
ideal the fluid becomes and the sound mode gets less ab-
sorbed.

Generation of the sound, radiated while crossing the
phase transitions, is a well known phenomenon in various
settings: everyone heard the sounds from a near-boiling
pot. While the QCD phase transition is a cross-over,
it is close to the 1st order one, and formation of inho-
mogeneous intermediate state in the near-Tc region is
highly probable. If so, the following sequence of events
has to follow: (i) the surface tension should lead those
regions to near-spherical “QGP drops”, (ii) their subse-
quent Rayleigh collapse and (iii) their energy is partly
transfered into the outgoing shocks (see Fig.??). We
therefore now suggest to look for the sounds circles at

freezeout generated by these hypothetical “mini-Bangs”,
as we will call them.

It would be important for what follows to note, that
the initial state perturbations are believed to be rapidity
independent, and thus their studies were restricted to
the transverse plane and the angle �. Idea: use rapidity
direction rather than phi. Small circles not reaching the
boundary and show only one peak. Initial state is eta-
independent so let us use eta direction

II. DROP’S COLLAPSE AND SOUND
FORMATION

A. The Rayleigh collapse

This section is given for self-consistency of the paper,
it contains well known material worked out by people
working on sonoluminescence, for a review see e. g. [? ].

We start by reminding the derivation of the “Rayleigh
l.h.s.” from Euler hydro equations

⇢[@t~u + (~u~r)~u] = �~rp

@t⇢ + ~r(⇢~u) = 0 (1)

The first standard steps are assumption of the spherical
symmetry of the flow and introduction of the flow poten-
tial

~u = ~r�(r, t) (2)

like a boiling coffe pot,the fireball may “sing” before hadronization
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have so short relaxation timescale that all memory of the
transition passed is quickly erased.

There are many sources of the event-by-event fluctua-
tions unrelated to the phase transition. The fluctuations
of the initial conditions should result in event-by-event
fluctuations of the elliptic flow [2] and of the third and
higher harmonics [3]. The two-particle correlation func-
tions in azimuthal angle � have been extended both at
RHIC and LHC, revealing significant magnitude of the
harmonics < v2

n > for n = 2� 6 [? ]. These results con-
firm elastic properties of the matter produced and further
constraint the magnitude of its viscosities.

(There are two opposing models on the origin of these
harmonics: random Gaussian noise from the event shapes
[3] versus the “coherent sounds circles” [4–6]. The lat-
ter model get fluctuations from quasi-local perturbations,
and thus directly relates the observed power spectrum to
the sound horizon scale. The main distinction between
those is the coherence between the harmonics which can
be measured by 3 (or more) particle correlations for cen-
tral collisions [5]. )

In this paper we propose new strategy to look for crit-

ical event-by-event fluctuations, using the sound they
emit. In order for it to succeed, one needs elas-
tic/hydrodinamical properties of matter to be main-
tained for some time, between their origination and the
final (kinetic) freezeout. This can be motivated as fol-
lows: The stronger the interaction in the media, the more
it prevents (quasi)particles from propagating, the more
ideal the fluid becomes and the sound mode gets less ab-
sorbed.

Generation of the sound, radiated while crossing the
phase transitions, is a well known phenomenon in various
settings: everyone heard the sounds from a near-boiling
pot. While the QCD phase transition is a cross-over,
it is close to the 1st order one, and formation of inho-
mogeneous intermediate state in the near-Tc region is
highly probable. If so, the following sequence of events
has to follow: (i) the surface tension should lead those
regions to near-spherical “QGP drops”, (ii) their subse-
quent Rayleigh collapse and (iii) their energy is partly
transfered into the outgoing shocks (see Fig.??). We
therefore now suggest to look for the sounds circles at

freezeout generated by these hypothetical “mini-Bangs”,
as we will call them.

It would be important for what follows to note, that
the initial state perturbations are believed to be rapidity
independent, and thus their studies were restricted to
the transverse plane and the angle �. Idea: use rapidity
direction rather than phi. Small circles not reaching the
boundary and show only one peak. Initial state is eta-
independent so let us use eta direction

II. DROP’S COLLAPSE AND SOUND
FORMATION

A. The Rayleigh collapse

This section is given for self-consistency of the paper,
it contains well known material worked out by people
working on sonoluminescence, for a review see e. g. [? ].

We start by reminding the derivation of the “Rayleigh
l.h.s.” from Euler hydro equations

⇢[@t~u + (~u~r)~u] = �~rp

@t⇢ + ~r(⇢~u) = 0 (1)

The first standard steps are assumption of the spherical
symmetry of the flow and introduction of the flow poten-
tial

~u = ~r�(r, t) (2)
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Figure 3. Sixth order cumulants of net baryon number, electric charge and strangeness
fluctuations calculated in (2+1)-flavor QCD at µB = 0 [4, 8] (left) and in the PQM
model (right) [9].

and its position relative to the pseudo-critical temperature for the chiral transition is

controlled by the location of the maximum of f (3)
f and its location relative to the peak

in the chiral susceptibility. The latter appears at a somewhat higher temperature [10].

For µB/T > 0 the onset of negative values for χB
6 indeed follows the crossover line for

the QCD transition [9, 13].

3. Conclusions

Sixth order cumulants are thus expected to change sign at a temperature below the

(pseudo-critical) chiral transition temperature. This effect should become visible even

at the LHC and the highest RHIC energy if chemical freeze out indeed occurs close to the

QCD transition temperature and if higher moments probe these freeze out conditions.
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sound from near Tc region in rapidity direction

I. INTRODUCTION

Production of Quark-Gluon Plasma (QGP) has been a
major goal of heavy-ion collision program at RHIC and
LHC. The observed explosion, often called “The Little
Bang” due to some parallels to the cosmological Bing
Bang, is quantitatively described by hydrodynamics. In
particular, it predicted quite accurately the radial and
elliptic flows a decade ago [? ]. Its important component
was the equation of state (EOS) including a transition
between the QGP and hadronic phases. Characteristic
“softnes” of the intermediate “mixed” phase of the pro-
cess is considered to be an indirect signature of the QCD
phase transition.

Looking for more direct signatures of the transition,
one thought about critical fluctuations. A relation be-
tween the event-by-event spread of certain observables
and thermodynamical fluctuations has been first dis-
cussed in [1], in which it was pointed out that in the near-
Tc region they are enhanced. It was then proposed to
look at the event-by-event fluctuations near the second-
order critical point [7]. This idea were discussed in many
subsequent works and was the motivation of the down-
ward energy scan program at RHIC: yet up to now the
observed fluctuations (in pt, the charge and flavor e.g.
K/⇡ ratios etc) basically are those in the hadronic res-
onance gas at freezeout. Either the critical point does
not exist in that region, or the equilibration processes
have so short relaxation timescale that all memory of the
transition passed is quickly erased.

There are many sources of the event-by-event fluctua-
tions unrelated to the phase transition. The fluctuations
of the initial conditions should result in event-by-event
fluctuations of the elliptic flow [2] and of the third and
higher harmonics [3]. The two-particle correlation func-
tions in azimuthal angle � have been extended both at
RHIC and LHC, revealing significant magnitude of the
harmonics < v2

n > for n = 2� 6 [? ]. These results con-
firm elastic properties of the matter produced and further
constraint the magnitude of its viscosities.

(There are two opposing models on the origin of these
harmonics: random Gaussian noise from the event shapes
[3] versus the “coherent sounds circles” [4–6]. The lat-
ter model get fluctuations from quasi-local perturbations,
and thus directly relates the observed power spectrum to
the sound horizon scale. The main distinction between
those is the coherence between the harmonics which can
be measured by 3 (or more) particle correlations for cen-
tral collisions [5]. )

In this paper we propose new strategy to look for crit-

ical event-by-event fluctuations, using the sound they
emit. In order for it to succeed, one needs elas-
tic/hydrodinamical properties of matter to be main-
tained for some time, between their origination and the
final (kinetic) freezeout. This can be motivated as fol-
lows: The stronger the interaction in the media, the more
it prevents (quasi)particles from propagating, the more
ideal the fluid becomes and the sound mode gets less ab-
sorbed.

Generation of the sound, radiated while crossing the
phase transitions, is a well known phenomenon in various
settings: everyone heard the sounds from a near-boiling
pot. While the QCD phase transition is a cross-over,
it is close to the 1st order one, and formation of inho-
mogeneous intermediate state in the near-Tc region is
highly probable. If so, the following sequence of events
has to follow: (i) the surface tension should lead those
regions to near-spherical “QGP drops”, (ii) their subse-
quent Rayleigh collapse and (iii) their energy is partly
transfered into the outgoing shocks (see Fig.??). We
therefore now suggest to look for the sounds circles at

freezeout generated by these hypothetical “mini-Bangs”,
as we will call them.

It would be important for what follows to note, that
the initial state perturbations are believed to be rapidity
independent, and thus their studies were restricted to
the transverse plane and the angle �. Idea: use rapidity
direction rather than phi. Small circles not reaching the
boundary and show only one peak. Initial state is eta-
independent so let us use eta direction

II. DROP’S COLLAPSE AND SOUND
FORMATION

A. The Rayleigh collapse

This section is given for self-consistency of the paper,
it contains well known material worked out by people
working on sonoluminescence, for a review see e. g. [? ].

We start by reminding the derivation of the “Rayleigh
l.h.s.” from Euler hydro equations

⇢[@t~u + (~u~r)~u] = �~rp

@t⇢ + ~r(⇢~u) = 0 (1)

The first standard steps are assumption of the spherical
symmetry of the flow and introduction of the flow poten-
tial

~u = ~r�(r, t) (2)
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Figure 3. Sixth order cumulants of net baryon number, electric charge and strangeness
fluctuations calculated in (2+1)-flavor QCD at µB = 0 [4, 8] (left) and in the PQM
model (right) [9].

and its position relative to the pseudo-critical temperature for the chiral transition is

controlled by the location of the maximum of f (3)
f and its location relative to the peak

in the chiral susceptibility. The latter appears at a somewhat higher temperature [10].

For µB/T > 0 the onset of negative values for χB
6 indeed follows the crossover line for

the QCD transition [9, 13].

3. Conclusions

Sixth order cumulants are thus expected to change sign at a temperature below the

(pseudo-critical) chiral transition temperature. This effect should become visible even

at the LHC and the highest RHIC energy if chemical freeze out indeed occurs close to the

QCD transition temperature and if higher moments probe these freeze out conditions.
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and stripping o↵ the gradient, so that the first Euler
equation looks

⇢@t� + (@r�)2/2 = �p (3)

Using dp/d⇢ = c2, dh = dp/⇢ (h is enhtalpy, and c is the
sound velocity, not the speed of light taken to be 1) one
gets a single eqn

~r2�� 1
c2

@2
t � =

u

c2
(@tu� @rh) (4)

Now comes the crucial step: if all flows are slow
compared to c, only the Laplacian term matters. It
provides simple Coulomb-like solution to the potential
� ⇠ const1/r + const2. The constants are time depen-
dent and can be matches to the boundary conditions of
the problem. One of them is at the bubble wall: if its
location is some function of time R(t), the condition is

ur = @r� = Ṙ (5)

where a dot means time derivative. It leads to a solution

� = � ṘR2

r
+ const2(t) (6)

and putting it back into Euler equation in the form (3)
one finds at r = R the equation for R(t)

⇢(R̈R + (2� 1/2)Ṙ2) = p(r =1, t) (7)

where the (1/2) comes from the second term of (3 ) and
the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
as “the Rayleigh collapse”

R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.

R̈R + (3/2)Ṙ2 = �4⌘Ṙ

⇢R
(9)

Solving this equation with variable value of the viscos-
ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
shown the solutions with increasing values of ⌘ ⇤ T/⇢,
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so, the viscosity 0.8 which is twice son, reduces the radius by a factor 10, or volume by a factor 1000: 

nothing is left. All goes into radiation

let me now change it a bit calculating the sound radiation rate from those curves

RR := (1-t)^0.4; diff(RR,t); diff(diff(RR,t),t);

RR := 1K t
0.4

K
0.4

1K t
0.6

K
0.24

1K t
1.6

ok, now I introduce various r.h.s.,e.g. some volume and surface ones: should be balanced at radius 1

eta:=0.08; sys:={ R1(t)=diff(R(t),t), R2(t)=diff(R1(t),t), R2(t)*R
(t)+(3/2)*R1(t)^2=-4*eta*R1(t)/R(t),              R(0)=1,R1(0)=
-0.4, R2(0)=-.24}; 

FIG. 1: The time evolution of the drop radius R(t), for the

values of ⌘/⇢ = 0.01..0.1 with the 0.01 step.

the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢

4⇡c
|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound

� = �1(t)� 1
r
F (t� r/c) ⇡ �1(t)� 1

r
F (t) +

1
c
Ḟ (11)

where, as before F (t) = ṘR2, one finds a contribution to
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where the (1/2) comes from the second term of (3 ) and
the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
as “the Rayleigh collapse”

R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.

R̈R + (3/2)Ṙ2 = �4⌘Ṙ
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ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
shown the solutions with increasing values of ⌘ ⇤ T/⇢,
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values of ⌘/⇢ = 0.01..0.1 with the 0.01 step.

the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢
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|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound
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r007 := PLOT ...

eta d 0.06; sysd  R1 t = diff R t , t , R2 t = diff R1 t , t , R2 t *R t C 3 / 2

*R1 t ^2 =K4 * eta *R1 t /R t ,  R 0 = 1, R1 0 =K0.4, R2 0 =K.24 :  sol4

d dsolve sys, numeric, output = listprocedure : Fun4d eval R t , sol4 : Fun41

d eval R1 t , sol4 : Fun42d eval R2 t , sol4 : r006d plot rad, 0 ..2.2 ;

 

! := 0.06

r006 := PLOT ...

display r006, r007, r008, r009, r01 ;
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FIG. 2: The time evolution of the quantity | ¨V (t)|2, enter-

ing the sound radiation intensity, for the values of ⌘/⇢ =

0.06, 0.07, 0.08, 0.09, 0.1.

the r.h.s. of the main equation to be

⇢(R̈R + (3/2)Ṙ2) = ... +
⇢

c

d2

dt2
(
dR

dt
R2) (12)

Using the Rayleigh collapse solution one can see that
it is very singular term. As it is the case with other
self-force applications, having small terms with higher
derivative prone to spurious a-causal solutions, so this
equation is to be treated with care. Yet the main answer
is clear: the energy of the collapsing bubble is transfered
into the outgoing shock/sound wave. These shocks have
been seen directly for collapsing bubbles: their speed tells
us about the compression factor reached.

III. THE PROPAGATION OF THE SOUND ON
TOP OF EXPANDING FIREBALL

d2�(⇢)
d⇢2

� 2tanh(⇢)
3

d�(⇢)
d⇢

+
k2

3
�(⇢) = 0 (13)

why the clusters studied at RHIC have Gaussian
shape? Can it be because of the transition from y to
pseudorapidity?

comparison

IV. SUMMARY AND DISCUSSION

In this paper we
(i) have assumed that during passing of the T ⇡ Tc re-
gion of the QCD phase transition some inhomogeneous
intermediate state of matter is reached, resulting in for-
mation of the “QGP drops” ;
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(ii) had shown that they likely to undergo the Rayleigh
collapse
(iii) converting a fraction of its energy into an outgoing
shock/sound pulse (called the mini-bang)
(iv) which by the time still left till final freezeout (up
to �⌧ ⇠ 3fm) generate sound circles of the size c�⌧ ⇠
1.2fm. We further proposed that such circles can be seen
as the double-peaked structures in the rapidity direction.

Our two motivations suggest that at near-Tc proper
time the sound is emitted: yet the success is not guaran-
teed because it can still get dissipated before freezeout.
Indeed, the “perfect liquid” properties of the matter are
known for QGP, not so much for the late-stages hadronic
matter.

Global hydrodynamics tells us that it corresponds to
the proper time ⌧(Tc)/RT =(1.0-1.5) at RHIC energyp

s ⇠ 200 GeV and (1.5-2) at the LHC
p

s ⇠ 3 TeV .
The time available for their propagation

�⌧ = ⌧(freezeout)� ⌧(Tc) (14)

is ???

V. APPENDIX A: THE JACOBIAN DIP

There is the so called “Jacobian dip” in the pseudo-
rapidity ⌘ = (1/2)ln((p + Pl)/(p � Pl)) distribution as
opposed to true rapidity y = (1/2)ln((E +Pl)/(E�Pl)):
indeed

dy

d⌘
=

1p
1 + m2/(ptcosh(⌘)2

(15)

but neither the magnitude nor the width of the observed
dip can be explained by it.
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and stripping o↵ the gradient, so that the first Euler
equation looks

⇢@t� + (@r�)2/2 = �p (3)

Using dp/d⇢ = c2, dh = dp/⇢ (h is enhtalpy, and c is the
sound velocity, not the speed of light taken to be 1) one
gets a single eqn

~r2�� 1
c2

@2
t � =

u

c2
(@tu� @rh) (4)

Now comes the crucial step: if all flows are slow
compared to c, only the Laplacian term matters. It
provides simple Coulomb-like solution to the potential
� ⇠ const1/r + const2. The constants are time depen-
dent and can be matches to the boundary conditions of
the problem. One of them is at the bubble wall: if its
location is some function of time R(t), the condition is

ur = @r� = Ṙ (5)

where a dot means time derivative. It leads to a solution

� = � ṘR2

r
+ const2(t) (6)

and putting it back into Euler equation in the form (3)
one finds at r = R the equation for R(t)

⇢(R̈R + (2� 1/2)Ṙ2) = p(r =1, t) (7)

where the (1/2) comes from the second term of (3 ) and
the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
as “the Rayleigh collapse”

R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.

R̈R + (3/2)Ṙ2 = �4⌘Ṙ

⇢R
(9)

Solving this equation with variable value of the viscos-
ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
shown the solutions with increasing values of ⌘ ⇤ T/⇢,
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so, the viscosity 0.8 which is twice son, reduces the radius by a factor 10, or volume by a factor 1000: 

nothing is left. All goes into radiation

let me now change it a bit calculating the sound radiation rate from those curves

RR := (1-t)^0.4; diff(RR,t); diff(diff(RR,t),t);

RR := 1K t
0.4

K
0.4

1K t
0.6

K
0.24

1K t
1.6

ok, now I introduce various r.h.s.,e.g. some volume and surface ones: should be balanced at radius 1

eta:=0.08; sys:={ R1(t)=diff(R(t),t), R2(t)=diff(R1(t),t), R2(t)*R
(t)+(3/2)*R1(t)^2=-4*eta*R1(t)/R(t),              R(0)=1,R1(0)=
-0.4, R2(0)=-.24}; 

FIG. 1: The time evolution of the drop radius R(t), for the

values of ⌘/⇢ = 0.01..0.1 with the 0.01 step.

the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢

4⇡c
|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound

� = �1(t)� 1
r
F (t� r/c) ⇡ �1(t)� 1

r
F (t) +

1
c
Ḟ (11)

where, as before F (t) = ṘR2, one finds a contribution to
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the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢

4⇡c
|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound
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r007 := PLOT ...

eta d 0.06; sysd  R1 t = diff R t , t , R2 t = diff R1 t , t , R2 t *R t C 3 / 2

*R1 t ^2 =K4 * eta *R1 t /R t ,  R 0 = 1, R1 0 =K0.4, R2 0 =K.24 :  sol4

d dsolve sys, numeric, output = listprocedure : Fun4d eval R t , sol4 : Fun41
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FIG. 2: The time evolution of the quantity | ¨V (t)|2, enter-

ing the sound radiation intensity, for the values of ⌘/⇢ =

0.06, 0.07, 0.08, 0.09, 0.1.

the r.h.s. of the main equation to be

⇢(R̈R + (3/2)Ṙ2) = ... +
⇢

c

d2

dt2
(
dR

dt
R2) (12)

Using the Rayleigh collapse solution one can see that
it is very singular term. As it is the case with other
self-force applications, having small terms with higher
derivative prone to spurious a-causal solutions, so this
equation is to be treated with care. Yet the main answer
is clear: the energy of the collapsing bubble is transfered
into the outgoing shock/sound wave. These shocks have
been seen directly for collapsing bubbles: their speed tells
us about the compression factor reached.

III. THE PROPAGATION OF THE SOUND ON
TOP OF EXPANDING FIREBALL

d2�(⇢)
d⇢2

� 2tanh(⇢)
3

d�(⇢)
d⇢

+
k2

3
�(⇢) = 0 (13)

why the clusters studied at RHIC have Gaussian
shape? Can it be because of the transition from y to
pseudorapidity?

comparison

IV. SUMMARY AND DISCUSSION

In this paper we
(i) have assumed that during passing of the T ⇡ Tc re-
gion of the QCD phase transition some inhomogeneous
intermediate state of matter is reached, resulting in for-
mation of the “QGP drops” ;
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(ii) had shown that they likely to undergo the Rayleigh
collapse
(iii) converting a fraction of its energy into an outgoing
shock/sound pulse (called the mini-bang)
(iv) which by the time still left till final freezeout (up
to �⌧ ⇠ 3fm) generate sound circles of the size c�⌧ ⇠
1.2fm. We further proposed that such circles can be seen
as the double-peaked structures in the rapidity direction.

Our two motivations suggest that at near-Tc proper
time the sound is emitted: yet the success is not guaran-
teed because it can still get dissipated before freezeout.
Indeed, the “perfect liquid” properties of the matter are
known for QGP, not so much for the late-stages hadronic
matter.

Global hydrodynamics tells us that it corresponds to
the proper time ⌧(Tc)/RT =(1.0-1.5) at RHIC energyp

s ⇠ 200 GeV and (1.5-2) at the LHC
p

s ⇠ 3 TeV .
The time available for their propagation

�⌧ = ⌧(freezeout)� ⌧(Tc) (14)

is ???

V. APPENDIX A: THE JACOBIAN DIP

There is the so called “Jacobian dip” in the pseudo-
rapidity ⌘ = (1/2)ln((p + Pl)/(p � Pl)) distribution as
opposed to true rapidity y = (1/2)ln((E +Pl)/(E�Pl)):
indeed

dy

d⌘
=

1p
1 + m2/(ptcosh(⌘)2

(15)

but neither the magnitude nor the width of the observed
dip can be explained by it.
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as well as evaporation/condensation of water vapor (see
Sec. III), and the (local) driving pressure Pa is very sen-
sitive to perturbations of the flask geometry, such as
might be caused by a small hydrophone attempting to
measure Pa . In addition, the precision of such a hydro-
phone is limited to roughly 0.05 bar.

The standard procedure has been to measure R(t)
with Mie scattering3 and then to fit the data to Rayleigh-
Plesset-type dynamics by adjusting R0 and Pa . A typical
trace for a sonoluminescing bubble’s radius during a
cycle of the drive is shown in Fig. 21. The filled circles
represent experimental measurements, and the solid line
is a solution to the Keller equation under the assump-
tion of isothermal heating (!!1). Superimposed as a
thin line is the applied forcing pressure.

The problem with these fits is that R0 and Pa sensi-
tively depend on model details. In particular, if one ad-
justs R0 and Pa such that the bubble’s maximum is well
fitted, the afterbounces are always overestimated (see
Fig. 21). Better fits can be achieved by allowing more
parameters, e.g., by allowing the material constants such
as the viscosity or the surface tension to vary. Barber
et al. (1992), for example, used seven times the usual
value of the viscosity of water to achieve a fit to the
afterbounces. As clarified by Prosperetti and Hao
(1999), the larger viscosity effectively parametrizes other
damping mechanisms not captured in simple Rayleigh-
Plesset-type models. In particular, Prosperetti and Hao
(1999) included thermal losses, following Prosperetti
(1991), reducing the size of the afterbounces. Yasui
(1995) had some success by introducing thermal bound-
ary layers as well.

Another effect that must be considered when fitting
experimental R(t) curves to Rayleigh-Plesset models is
the invasion of water vapor at bubble maximum. This
leads to a varying ambient radius R0 over the bubble
cycle, being largest at maximum radius. Since many
early fits of R(t) curves (summarized by Barber et al.,
1997) did not consider these effects, the resulting values
for R0 and Pa are only approximate.

Mie scattering data near the collapse are also notori-
ously difficult to interpret because of the unknown index
of refraction inside the compressed bubble and because
the bubble radius R becomes of the order of the light
wavelength. The simple proportionality of Mie intensity
and R2, valid for larger R , gets lost and the relation
even becomes nonmonotonic (Gompf and Pecha, 2000).
Moreover, at collapse, the light is reflected not only from
the bubble wall, but also from the shock wave emitted
from the bubble at collapse. This subject will be treated
in the next subsection.

Another light-scattering technique based on differen-
tial measurement and polarization (differential light
scattering) has been developed by Vacca et al. (1999) in

order to measure the dynamics of the bubble radius.
With this technique a time resolution of up to 0.5 ns
around the Rayleigh collapse has been achieved.

F. Sound emission from the bubble

The Rayleigh-Plesset equation predicts the response
not only of the bubble radius, but also of the surround-
ing liquid. This has been detected by Cordry (1995),
Holzfuss, Rüggeberg, and Billo (1998), Matula et al.
(1998), Wang et al. (1999), Gompf and Pecha (2000),
Pecha and Gompf (2000), and Weninger et al. (2000).
Matula et al. (1998) used a piezoelectric hydrophone to
measure a pressure pulse with fast rise time (5.2 ns) and
high amplitude (1.7 bars) at a transducer at 1-mm dis-
tance from the bubble. Wang et al. (1999) carried out a
systematic study of the strength and duration of the
pressure pulses as a function of gas concentration, driv-
ing pressure, and liquid temperature. They demon-
strated that a probe 2.5 mm from the bubble observes
pressure pulses with rise times varying from 5 to 30 ns as
the driving pressure and dissolved gas concentration
vary. The amplitude of the pressure pulses varies be-
tween 1 and 3 bars.

Another study of this type was carried out by Pecha
and Gompf (2000; Gompf and Pecha, 2000). They mea-
sured pressure amplitudes and rise times consistent with
the other measurements, and were able to measure the
pressure pulse much closer (within 50 "m) to the
bubble. In addition, using a streak camera and shadow-
graph technique, they visualized the shock wave leaving
the bubble (see Fig. 22). Pecha and Gompf (2000) found

3See, for instance, the work of Gaitan, 1990; Barber et al.,
1992, 1997; Gaitan et al., 1992; Lentz et al., 1995; Weninger,
Barber, and Putterman, 1997; Matula, 1999; Gompf and Pecha,
2000; Pecha and Gompf, 2000; Weninger et al., 2000.

FIG. 22. Outgoing shock wave from a collapsing bubble: (a)
Streak image of the emitted outgoing shock wave from the
collapsing bubble and (b) an intensity cross section along the
line AA!. From Pecha and Gompf (2000).
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where a dot means time derivative. It leads to a solution

� = � ṘR2
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the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
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R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.
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Solving this equation with variable value of the viscos-
ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
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the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])
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In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound

� = �1(t)� 1
r
F (t� r/c) ⇡ �1(t)� 1
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F (t) +
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c
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where, as before F (t) = ṘR2, one finds a contribution to

2

and stripping o↵ the gradient, so that the first Euler
equation looks

⇢@t� + (@r�)2/2 = �p (3)

Using dp/d⇢ = c2, dh = dp/⇢ (h is enhtalpy, and c is the
sound velocity, not the speed of light taken to be 1) one
gets a single eqn
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Now comes the crucial step: if all flows are slow
compared to c, only the Laplacian term matters. It
provides simple Coulomb-like solution to the potential
� ⇠ const1/r + const2. The constants are time depen-
dent and can be matches to the boundary conditions of
the problem. One of them is at the bubble wall: if its
location is some function of time R(t), the condition is

ur = @r� = Ṙ (5)

where a dot means time derivative. It leads to a solution

� = � ṘR2

r
+ const2(t) (6)

and putting it back into Euler equation in the form (3)
one finds at r = R the equation for R(t)

⇢(R̈R + (2� 1/2)Ṙ2) = p(r =1, t) (7)

where the (1/2) comes from the second term of (3 ) and
the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
as “the Rayleigh collapse”

R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.

R̈R + (3/2)Ṙ2 = �4⌘Ṙ

⇢R
(9)

Solving this equation with variable value of the viscos-
ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
shown the solutions with increasing values of ⌘ ⇤ T/⇢,
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so, the viscosity 0.8 which is twice son, reduces the radius by a factor 10, or volume by a factor 1000: 

nothing is left. All goes into radiation

let me now change it a bit calculating the sound radiation rate from those curves
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ok, now I introduce various r.h.s.,e.g. some volume and surface ones: should be balanced at radius 1
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(t)+(3/2)*R1(t)^2=-4*eta*R1(t)/R(t),              R(0)=1,R1(0)=
-0.4, R2(0)=-.24}; 

FIG. 1: The time evolution of the drop radius R(t), for the

values of ⌘/⇢ = 0.01..0.1 with the 0.01 step.

the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢

4⇡c
|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound
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FIG. 2: The time evolution of the quantity | ¨V (t)|2, enter-

ing the sound radiation intensity, for the values of ⌘/⇢ =

0.06, 0.07, 0.08, 0.09, 0.1.

the r.h.s. of the main equation to be

⇢(R̈R + (3/2)Ṙ2) = ... +
⇢

c

d2

dt2
(
dR

dt
R2) (12)

Using the Rayleigh collapse solution one can see that
it is very singular term. As it is the case with other
self-force applications, having small terms with higher
derivative prone to spurious a-causal solutions, so this
equation is to be treated with care. Yet the main answer
is clear: the energy of the collapsing bubble is transfered
into the outgoing shock/sound wave. These shocks have
been seen directly for collapsing bubbles: their speed tells
us about the compression factor reached.

III. THE PROPAGATION OF THE SOUND ON
TOP OF EXPANDING FIREBALL

d2�(⇢)
d⇢2

� 2tanh(⇢)
3

d�(⇢)
d⇢

+
k2

3
�(⇢) = 0 (13)

why the clusters studied at RHIC have Gaussian
shape? Can it be because of the transition from y to
pseudorapidity?

comparison

IV. SUMMARY AND DISCUSSION

In this paper we
(i) have assumed that during passing of the T ⇡ Tc re-
gion of the QCD phase transition some inhomogeneous
intermediate state of matter is reached, resulting in for-
mation of the “QGP drops” ;
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FIG. 3:

(ii) had shown that they likely to undergo the Rayleigh
collapse
(iii) converting a fraction of its energy into an outgoing
shock/sound pulse (called the mini-bang)
(iv) which by the time still left till final freezeout (up
to �⌧ ⇠ 3fm) generate sound circles of the size c�⌧ ⇠
1.2fm. We further proposed that such circles can be seen
as the double-peaked structures in the rapidity direction.

Our two motivations suggest that at near-Tc proper
time the sound is emitted: yet the success is not guaran-
teed because it can still get dissipated before freezeout.
Indeed, the “perfect liquid” properties of the matter are
known for QGP, not so much for the late-stages hadronic
matter.

Global hydrodynamics tells us that it corresponds to
the proper time ⌧(Tc)/RT =(1.0-1.5) at RHIC energyp

s ⇠ 200 GeV and (1.5-2) at the LHC
p

s ⇠ 3 TeV .
The time available for their propagation

�⌧ = ⌧(freezeout)� ⌧(Tc) (14)

is ???

V. APPENDIX A: THE JACOBIAN DIP

There is the so called “Jacobian dip” in the pseudo-
rapidity ⌘ = (1/2)ln((p + Pl)/(p � Pl)) distribution as
opposed to true rapidity y = (1/2)ln((E +Pl)/(E�Pl)):
indeed

dy

d⌘
=

1p
1 + m2/(ptcosh(⌘)2

(15)

but neither the magnitude nor the width of the observed
dip can be explained by it.
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as well as evaporation/condensation of water vapor (see
Sec. III), and the (local) driving pressure Pa is very sen-
sitive to perturbations of the flask geometry, such as
might be caused by a small hydrophone attempting to
measure Pa . In addition, the precision of such a hydro-
phone is limited to roughly 0.05 bar.

The standard procedure has been to measure R(t)
with Mie scattering3 and then to fit the data to Rayleigh-
Plesset-type dynamics by adjusting R0 and Pa . A typical
trace for a sonoluminescing bubble’s radius during a
cycle of the drive is shown in Fig. 21. The filled circles
represent experimental measurements, and the solid line
is a solution to the Keller equation under the assump-
tion of isothermal heating (!!1). Superimposed as a
thin line is the applied forcing pressure.

The problem with these fits is that R0 and Pa sensi-
tively depend on model details. In particular, if one ad-
justs R0 and Pa such that the bubble’s maximum is well
fitted, the afterbounces are always overestimated (see
Fig. 21). Better fits can be achieved by allowing more
parameters, e.g., by allowing the material constants such
as the viscosity or the surface tension to vary. Barber
et al. (1992), for example, used seven times the usual
value of the viscosity of water to achieve a fit to the
afterbounces. As clarified by Prosperetti and Hao
(1999), the larger viscosity effectively parametrizes other
damping mechanisms not captured in simple Rayleigh-
Plesset-type models. In particular, Prosperetti and Hao
(1999) included thermal losses, following Prosperetti
(1991), reducing the size of the afterbounces. Yasui
(1995) had some success by introducing thermal bound-
ary layers as well.

Another effect that must be considered when fitting
experimental R(t) curves to Rayleigh-Plesset models is
the invasion of water vapor at bubble maximum. This
leads to a varying ambient radius R0 over the bubble
cycle, being largest at maximum radius. Since many
early fits of R(t) curves (summarized by Barber et al.,
1997) did not consider these effects, the resulting values
for R0 and Pa are only approximate.

Mie scattering data near the collapse are also notori-
ously difficult to interpret because of the unknown index
of refraction inside the compressed bubble and because
the bubble radius R becomes of the order of the light
wavelength. The simple proportionality of Mie intensity
and R2, valid for larger R , gets lost and the relation
even becomes nonmonotonic (Gompf and Pecha, 2000).
Moreover, at collapse, the light is reflected not only from
the bubble wall, but also from the shock wave emitted
from the bubble at collapse. This subject will be treated
in the next subsection.

Another light-scattering technique based on differen-
tial measurement and polarization (differential light
scattering) has been developed by Vacca et al. (1999) in

order to measure the dynamics of the bubble radius.
With this technique a time resolution of up to 0.5 ns
around the Rayleigh collapse has been achieved.

F. Sound emission from the bubble

The Rayleigh-Plesset equation predicts the response
not only of the bubble radius, but also of the surround-
ing liquid. This has been detected by Cordry (1995),
Holzfuss, Rüggeberg, and Billo (1998), Matula et al.
(1998), Wang et al. (1999), Gompf and Pecha (2000),
Pecha and Gompf (2000), and Weninger et al. (2000).
Matula et al. (1998) used a piezoelectric hydrophone to
measure a pressure pulse with fast rise time (5.2 ns) and
high amplitude (1.7 bars) at a transducer at 1-mm dis-
tance from the bubble. Wang et al. (1999) carried out a
systematic study of the strength and duration of the
pressure pulses as a function of gas concentration, driv-
ing pressure, and liquid temperature. They demon-
strated that a probe 2.5 mm from the bubble observes
pressure pulses with rise times varying from 5 to 30 ns as
the driving pressure and dissolved gas concentration
vary. The amplitude of the pressure pulses varies be-
tween 1 and 3 bars.

Another study of this type was carried out by Pecha
and Gompf (2000; Gompf and Pecha, 2000). They mea-
sured pressure amplitudes and rise times consistent with
the other measurements, and were able to measure the
pressure pulse much closer (within 50 "m) to the
bubble. In addition, using a streak camera and shadow-
graph technique, they visualized the shock wave leaving
the bubble (see Fig. 22). Pecha and Gompf (2000) found

3See, for instance, the work of Gaitan, 1990; Barber et al.,
1992, 1997; Gaitan et al., 1992; Lentz et al., 1995; Weninger,
Barber, and Putterman, 1997; Matula, 1999; Gompf and Pecha,
2000; Pecha and Gompf, 2000; Weninger et al., 2000.

FIG. 22. Outgoing shock wave from a collapsing bubble: (a)
Streak image of the emitted outgoing shock wave from the
collapsing bubble and (b) an intensity cross section along the
line AA!. From Pecha and Gompf (2000).
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and stripping o↵ the gradient, so that the first Euler
equation looks

⇢@t� + (@r�)2/2 = �p (3)

Using dp/d⇢ = c2, dh = dp/⇢ (h is enhtalpy, and c is the
sound velocity, not the speed of light taken to be 1) one
gets a single eqn

~r2�� 1
c2

@2
t � =

u

c2
(@tu� @rh) (4)

Now comes the crucial step: if all flows are slow
compared to c, only the Laplacian term matters. It
provides simple Coulomb-like solution to the potential
� ⇠ const1/r + const2. The constants are time depen-
dent and can be matches to the boundary conditions of
the problem. One of them is at the bubble wall: if its
location is some function of time R(t), the condition is

ur = @r� = Ṙ (5)

where a dot means time derivative. It leads to a solution

� = � ṘR2

r
+ const2(t) (6)

and putting it back into Euler equation in the form (3)
one finds at r = R the equation for R(t)

⇢(R̈R + (2� 1/2)Ṙ2) = p(r =1, t) (7)

where the (1/2) comes from the second term of (3 ) and
the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
as “the Rayleigh collapse”

R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.

R̈R + (3/2)Ṙ2 = �4⌘Ṙ

⇢R
(9)

Solving this equation with variable value of the viscos-
ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
shown the solutions with increasing values of ⌘ ⇤ T/⇢,
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so, the viscosity 0.8 which is twice son, reduces the radius by a factor 10, or volume by a factor 1000: 

nothing is left. All goes into radiation

let me now change it a bit calculating the sound radiation rate from those curves

RR := (1-t)^0.4; diff(RR,t); diff(diff(RR,t),t);

RR := 1K t
0.4
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ok, now I introduce various r.h.s.,e.g. some volume and surface ones: should be balanced at radius 1

eta:=0.08; sys:={ R1(t)=diff(R(t),t), R2(t)=diff(R1(t),t), R2(t)*R
(t)+(3/2)*R1(t)^2=-4*eta*R1(t)/R(t),              R(0)=1,R1(0)=
-0.4, R2(0)=-.24}; 

FIG. 1: The time evolution of the drop radius R(t), for the

values of ⌘/⇢ = 0.01..0.1 with the 0.01 step.

the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢

4⇡c
|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound

� = �1(t)� 1
r
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where, as before F (t) = ṘR2, one finds a contribution to
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and stripping o↵ the gradient, so that the first Euler
equation looks

⇢@t� + (@r�)2/2 = �p (3)

Using dp/d⇢ = c2, dh = dp/⇢ (h is enhtalpy, and c is the
sound velocity, not the speed of light taken to be 1) one
gets a single eqn
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Now comes the crucial step: if all flows are slow
compared to c, only the Laplacian term matters. It
provides simple Coulomb-like solution to the potential
� ⇠ const1/r + const2. The constants are time depen-
dent and can be matches to the boundary conditions of
the problem. One of them is at the bubble wall: if its
location is some function of time R(t), the condition is

ur = @r� = Ṙ (5)

where a dot means time derivative. It leads to a solution

� = � ṘR2
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+ const2(t) (6)

and putting it back into Euler equation in the form (3)
one finds at r = R the equation for R(t)

⇢(R̈R + (2� 1/2)Ṙ2) = p(r =1, t) (7)

where the (1/2) comes from the second term of (3 ) and
the r.h.s. is the driving pressure.

When the r.h.s. is positive the system is stable, but
as it crosses into negative the collapse takes place. What
was discovered by Rayleigh, even if the r.h.s. is put to
zero, the equation admits simple analytic solution known
as “the Rayleigh collapse”

R(t) ⇠ (t⇤ � t)2/5 (8)

corresponding to the infinite velocity Ṙ ⇠ (t⇤ � t)�3/5

at t = t⇤. Needless to say, large velocity is incompatible
with condition of small u << c and the near-collapse
stage should be treated separately.

B. The role of the viscosity and the sound
radiation

The first dissipative e↵ect we will study is the viscosity,
introduced by standard Navier-Stokes term in the r.h.s.

R̈R + (3/2)Ṙ2 = �4⌘Ṙ

⇢R
(9)

Solving this equation with variable value of the viscos-
ity reveals its critical magnitude capable to prevent the
Rayleigh collapse. As seen in Fig.2, in which we have
shown the solutions with increasing values of ⌘ ⇤ T/⇢,
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FIG. 1: The time evolution of the drop radius R(t), for the

values of ⌘/⇢ = 0.01..0.1 with the 0.01 step.

the collapse can be stopped by viscosity, providing “soft
landing”, from the value of the ratio > 0.6. The for
smaller values it goes into a singularity which stops the
numerical solver.

The second e↵ect is the sound radiation. For a
spherical source with a time-dependent volume V (t) =
(4⇡/3)R(t)3 the intensity of its radiation is (textbooks
such as [? ])

I =
⇢

4⇡c
|V̈ |2 (10)

In Fig.2 we plot the time evolution of the volume acceler-
ation squared for five trajectories with smooth viscosity-
induced end of the collapse. What one can see from those
figures is that the sound radiation has a sharp peak at
certain moment, which becomes much more pronounced
and then infinite, as the viscosity is reduced. This peak
is the “mini-bang” we are discussing in this paper.

The review [? ] on sonoluminiscence includes dis-
cussion of the shock waves produced by the collapsing
air bubbles in water. Their observed velocities (about
4 km/c) are well beyond the speed of sound in water
c = 1.43km/s, and suggested high pressure in the range
40-60 kbar. Those values correlate with reduction of the
bubble’s volume by huge factors, up to ⇠ 106 and emis-
sion of light, indicating high T ⇠ 1ev (thus the name
of sonoluminiscence). These experiments had further
observed high e�ciency O(1/2) of energy transfer into
sound.

It is methodically interesting (see refs in [? ]) to derive
the “self-force” induced by the sound radiation directly,
which is analogous to the Abraham-Lorentz reaction-to-
light radiation. Including in � the outhoing sound
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where, as before F (t) = ṘR2, one finds a contribution to

3

(16)(16)

> > 

(22)(22)

> > 

> > 

> > 

(7)(7)

> > 

(12)(12)

(23)(23)

r007 := PLOT ...

eta d 0.06; sysd  R1 t = diff R t , t , R2 t = diff R1 t , t , R2 t *R t C 3 / 2

*R1 t ^2 =K4 * eta *R1 t /R t ,  R 0 = 1, R1 0 =K0.4, R2 0 =K.24 :  sol4

d dsolve sys, numeric, output = listprocedure : Fun4d eval R t , sol4 : Fun41

d eval R1 t , sol4 : Fun42d eval R2 t , sol4 : r006d plot rad, 0 ..2.2 ;

 

! := 0.06

r006 := PLOT ...

display r006, r007, r008, r009, r01 ;

0 0.5 1 1.5 2
0

1

2

3

4

5

6

FIG. 2: The time evolution of the quantity | ¨V (t)|2, enter-

ing the sound radiation intensity, for the values of ⌘/⇢ =

0.06, 0.07, 0.08, 0.09, 0.1.

the r.h.s. of the main equation to be

⇢(R̈R + (3/2)Ṙ2) = ... +
⇢

c

d2

dt2
(
dR

dt
R2) (12)

Using the Rayleigh collapse solution one can see that
it is very singular term. As it is the case with other
self-force applications, having small terms with higher
derivative prone to spurious a-causal solutions, so this
equation is to be treated with care. Yet the main answer
is clear: the energy of the collapsing bubble is transfered
into the outgoing shock/sound wave. These shocks have
been seen directly for collapsing bubbles: their speed tells
us about the compression factor reached.

III. THE PROPAGATION OF THE SOUND ON
TOP OF EXPANDING FIREBALL

d2�(⇢)
d⇢2

� 2tanh(⇢)
3

d�(⇢)
d⇢

+
k2

3
�(⇢) = 0 (13)

why the clusters studied at RHIC have Gaussian
shape? Can it be because of the transition from y to
pseudorapidity?

comparison

IV. SUMMARY AND DISCUSSION

In this paper we
(i) have assumed that during passing of the T ⇡ Tc re-
gion of the QCD phase transition some inhomogeneous
intermediate state of matter is reached, resulting in for-
mation of the “QGP drops” ;
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FIG. 3:

(ii) had shown that they likely to undergo the Rayleigh
collapse
(iii) converting a fraction of its energy into an outgoing
shock/sound pulse (called the mini-bang)
(iv) which by the time still left till final freezeout (up
to �⌧ ⇠ 3fm) generate sound circles of the size c�⌧ ⇠
1.2fm. We further proposed that such circles can be seen
as the double-peaked structures in the rapidity direction.

Our two motivations suggest that at near-Tc proper
time the sound is emitted: yet the success is not guaran-
teed because it can still get dissipated before freezeout.
Indeed, the “perfect liquid” properties of the matter are
known for QGP, not so much for the late-stages hadronic
matter.

Global hydrodynamics tells us that it corresponds to
the proper time ⌧(Tc)/RT =(1.0-1.5) at RHIC energyp

s ⇠ 200 GeV and (1.5-2) at the LHC
p

s ⇠ 3 TeV .
The time available for their propagation

�⌧ = ⌧(freezeout)� ⌧(Tc) (14)

is ???

V. APPENDIX A: THE JACOBIAN DIP

There is the so called “Jacobian dip” in the pseudo-
rapidity ⌘ = (1/2)ln((p + Pl)/(p � Pl)) distribution as
opposed to true rapidity y = (1/2)ln((E +Pl)/(E�Pl)):
indeed

dy

d⌘
=

1p
1 + m2/(ptcosh(⌘)2

(15)

but neither the magnitude nor the width of the observed
dip can be explained by it.
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From expressions (108) and (109) in arXiv: 1012.1314 we get the following system of differential equations:

(1)

!dHrL

! r
=
l Hl + 1L nsHrL

3 cosh2HrL
-

1

3
Â k nhHrL

!nsHrL

! r
=

2

3
tanhHrL nsHrL - dHrL

!nhHrL

! r
=

2

3
tanhHrL nhHrL - Â k dHrL

This system cannot be solved analytically so, since we will be working in the discrete case, we need to redifine kØ
2 p
L k

l=0 case
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sound from a jet on top of expanding 
fireball (Gubser flow): the old Mach cone
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perturbed and 
unperturbed regions

ALICE: very 
preliminary: 
peaks perhaps due 
to 4 points (A-B,A’B’) 
are there  
 
 

Jet/Fireball Edge should be observable!

Edward Shuryak

Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794
(Dated: January 26, 2011)

Shock/sound propagation from the quenched jets have well-defined front, separating the fireball
into regions which are and are not a�ected. While even for the most robust jet quenching observed
this increases local temperature and flow of ambient matter by only few percent at most, strong
radial flow increases the contrast between the two regions so that the di�erence should be well seen
in particle spectra at some pt, perhaps even on event-by-event basis. We further show that the e�ect
comes mostly from certain ellipse-shaped 1-d curve, the intercept of three 3-d surfaces, the Mach
cone history, the timelike and spacelike freezeout surfaces. We further suggest that this “edge” is
already seen in an event released by ATLAS collaboration.

PACS numbers:

I. INTRODUCTION OF THE IDEA

Observation of jets at RHIC are limited to the trans-
verse energy in the range 20-30 GeV, which is quite
di⇥cult because of large and strongly fluctuating back-
ground. Therefore most of the studies has been based
on the two and three-hadron correlation functions. Fur-
thermore, for hadrons mostly studies their transverse mo-
menta are in the range of several GeV, where contribu-
tions from hard jets and the tail of hydrodynamical flow is
hard to separate uniquely. With the “Little Bang” arriv-
ing at LHC in November 2010, the situation has changed
since at LHC much higher energy jets are available, for
which triggering on jets works well. The first glimpse of
what is to come has been spectacularly demonstrated by
ATLAS collaboration in their first heavy ion paper [1]
devoted to jet quenching. Now the trigger jets have the
transverse energy E� > 100GeV : excellent calorimeter
of ATLAS make standard jet finding algorithms to work
well. The distribution over lost energy were found to
be very sensitive to centrality, and for central collisions
significant part of jet energy is lost, in some events com-
pletely.

In the present paper we turn to discussion of perturba-
tions of the “Little Bang” by the energy deposited by jets.
As evidenced by the enhanced radial and elliptic flows [2]
, overall hydrodynamical picture seem to work at LHC
as well as at RHIC. Once the energy is deposited into the
medium by the jet, it will result in shock/sound pertur-
bations in the shape of the Mach cone [3, 4], similar e.g.
to lightning and thunder. The present paper points out
that very strong radial flow allows one to significantly
simplify the problem, by focussing only the overlap of
the Mach (lifeline) 3d surface with the time-like and the
space-like freezeout surfaces.

The main idea to be presented is based on two very
simple geometrical observations:
(i) whatever complicated distorsions of the Mach cone in
exploding matter may appear, the observed spectra come
mostly from its intersection with the fireball space-time
boundary known as a freezeout surface.
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FIG. 1: Schematic shape of the Mach surface in the transverse
x, y plane at z = 0 and fixed time (upper plot), as well as its
shape in 3d including the (proper longitudinal) time (lower
plot). Mach surface �M is made of two parts, OCAA�T and
OCBB�T . For more explanations see text.

(ii) Furthermore, because of the Hubble-like nature of
the radial flow, the e�ect is strongly peaked at the in-
tersection of all three surfaces, the Mach surface ⇥M ,
the timelike and spacelike freezeout surfaces, denoted by
⇥t,⇥s respectively.
Since each 3-d surface is one equation in 4-d space-

time, the intersection of three of them are (two) 4-3=1-
d lines, �C , �T , to be specified below. It is those lines
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The$angular$edge$of$the$
jets:$ma3er$inside$is$
few$%$HOTTER$=>$
$SHOULD$BE$SEEN$
at$tuned$pt$

•  ATLAS very high energy event, in 
which there is no identifiable jet 

•  Tracks pt>2.6 GeV, cal. E>1GeV/cell 

•  Note the sharp edge of the away-side 
perturbation! Is it a �frozen  sound�? 

2

FIG. 1: Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, and
with high energy calorimeter cell deposits distributed over a wide azimuthal region. By selecting tracks with pT > 2.6 GeV
and applying cell thresholds in the calorimeters (ET > 700 MeV in the electromagnetic calorimeter, and E > 1 GeV in the
hadronic calorimeter) the recoil can be seen dispersed widely over azimuth.

|�| < 3.2. The hadronic calorimetry in the range |�| < 1.7
is provided by a sampling calorimeter made of steel and
scintillating tiles. In the end-caps (1.5 < |�| < 3.2),
LAr technology is also used for the hadronic calorime-
ters, matching the outer |�| limits of the electromag-
netic calorimeters. To complete the � coverage, the LAr
forward calorimeters provide both electromagnetic and
hadronic energy measurements, extending the coverage
up to |�| = 4.9. The calorimeter (�,⇥) granularities are
0.1 � 0.1 for the hadronic calorimeters up to |�| = 2.5
(except for the third layer of the Tile calorimeter, which
has a segmentation of 0.2�0.1 up to |�| = 1.7), and then
0.2� 0.2 up to |�| = 4.9. The EM calorimeters are longi-
tudinally segmented into three compartments and feature
a much finer readout granularity varying by layer, with
cells as small as 0.025�0.025 extending to |�| = 2.5 in the
middle layer. In the data taking period considered, ap-
proximately 187,000 calorimeter cells (98% of the total)
were usable for event reconstruction.

The bulk of the data reported here were triggered
using coincidence signals from two sets of Minimum
Bias Trigger Scintillator (MBTS) detectors, positioned
at z = ±3.56 m, covering the full azimuth between
2.09 < |�| < 3.84 and divided into eight ⇥ sectors and two
� sectors. Coincidences in the Zero Degree Calorimeter
and LUCID luminosity detectors were also used as pri-
mary triggers, since these detectors were far less suscep-
tible to LHC beam backgrounds. These triggers have a
large overlap and are close to fully e⌅cient for the events
studied here.

In the o⇧ine analysis, events are required to have a
time di⇤erence between the two sets of MBTS counters
of �t < 3 ns and a reconstructed vertex to e⌅ciently
reject beam-halo backgrounds. The primary vertex is
derived from the reconstructed tracks in the Inner De-
tector (ID), which covers |�| < 2.5 using silicon pixel and

strip detectors surrounded by straw tubes. These event
selection criteria have been estimated to accept over 98%
of the total lead-lead inelastic cross section.

The level of event activity or “centrality” is character-
ized using the total transverse energy (⇥ET ) deposited
in the Forward Calorimeters (FCAL), which cover 3.2 <
|�| < 4.9, shown in Fig. 2. Bins are defined in centrality
according to fractions of the total lead-lead cross sec-
tion selected by the trigger and are expressed in terms of
percentiles (0-10%, 10-20%, 20-40% and 40-100%) with
0% representing the upper end of the ⇥ET distribution.
Previous heavy ion experiments have shown a clear cor-
relation of the ⇥ET with the geometry of the overlap
region of the colliding nuclei and, correspondingly, the
total event multiplicity. This is verified in the bottom
panel of Fig. 2 which shows a tight correlation between
the energy flow near mid-rapidity and the forward ⇥ET .
The forward ⇥ET is used for this analysis to avoid biasing
the centrality measurement with jets.

Jets have been reconstructed using the infrared-safe
anti-kt jet clustering algorithm [8] with the radius pa-
rameter R = 0.4. The inputs to this algorithm are “tow-
ers” of calorimeter cells of size ����⇥ = 0.1� 0.1 with
the input cells weighted using energy-density dependent
factors to correct for calorimeter non-compensation and
other energy losses. Jet four-momenta are constructed
by the vectorial addition of cells, treating each cell as an
(E, ⇤p) four-vector with zero mass.

The jets reconstructed using the anti-kt algorithm con-
tain a mix of genuine jets, as well as jet-sized patches
of the underlying event. The distinction between signal
and background jets is defined by means of a discriminant
based on the jet constituent towers, D = ET (max)/⇥ET ⇤,
the ratio of the maximum tower energy over the mean
tower energy. The cut value Dcut = 5 is chosen from
simulation studies, and the results have been tested to

Jet/Fireball Edge
should

be
observable!

Edward
Shuryak

Departm
ent of Physics

and
Astronom

y, State
University

of New
York, Stony

Brook, NY
11794

(Dated: January
26, 2011)

Shock/sound
propagation

from
the quenched

jets have well-defined
front, separating

the fireball

into
regions which

are and
are not a�ected. W

hile even
for the m

ost robust jet quenching
observed

this increases local tem
perature

and
flow

of ambient m
atter by

only
few

percent at m
ost, strong

radial flow
increases the contrast between

the two
regions so

that the di�erence should
be well seen

in
particle spectra at som

e p
t , perhaps even

on
event-by-event basis. W

e further show
that the e�ect

com
es m

ostly
from

certain
ellipse-shaped

1-d
curve, the

intercept of three
3-d

surfaces, the
M
ach

cone
history, the

tim
elike

and
spacelike

freezeout surfaces.
W
e
further suggest that this “edge”

is

already
seen

in
an

event released
by

ATLAS
collaboration.

PACS
num

bers:

I.
IN

TR
O
D
U
C
TIO

N
O
F
TH

E
ID

EA

Observation
of jets at RHIC

are lim
ited

to
the trans-

verse
energy

in
the

range
20-30

GeV, which
is
quite

di⇥
cult because

of large
and

strongly
fluctuating

back-

ground.
Therefore

m
ost of the

studies
has

been
based

on
the two

and
three-hadron

correlation
functions. Fur-

therm
ore, for hadrons m

ostly studies their transverse m
o-

m
enta

are in
the range of several GeV, where contribu-

tions from
hard jets and the tail of hydrodynam

ical flow
is

hard
to separate uniquely. W

ith
the “Little Bang” arriv-

ing at LHC
in
November 2010, the situation

has changed

since at LHC
much

higher energy
jets are available, for

which
triggering

on
jets works well. The first glim

pse of

what is to com
e has been

spectacularly
dem

onstrated
by

ATLAS
collaboration

in
their

first
heavy

ion
paper

[1]

devoted
to
jet quenching. Now

the trigger jets have the

transverse
energy

E
�
>
100GeV :

excellent calorim
eter

of ATLAS
m
ake standard

jet finding algorithm
s to work

well.
The

distribution
over

lost
energy

were
found

to

be
very

sensitive
to
centrality, and

for central collisions

significant part of jet energy
is lost, in

som
e events com

-

pletely.In the present paper we turn to discussion of perturba-

tions of the “Little Bang” by the energy deposited by jets.

As evidenced by the enhanced radial and elliptic flows [2]

, overall hydrodynam
ical picture

seem
to
work

at LHC

as well as at RHIC. Once the energy is deposited into the

m
edium

by
the jet, it will result in

shock/sound
pertur-

bations in
the shape of the M

ach
cone [3, 4], sim

ilar e.g.

to
lightning

and
thunder. The present paper points out

that
very

strong
radial flow

allows
one

to
significantly

sim
plify

the
problem

, by
focussing

only
the

overlap
of

the M
ach

(lifeline) 3d
surface with

the tim
e-like and

the

space-like freezeout surfaces.

The
m
ain

idea
to

be
presented

is based
on

two
very

sim
ple geom

etrical observations:

(i) whatever com
plicated

distorsions of the M
ach

cone in

exploding m
atter m

ay appear, the observed spectra com
e

m
ostly

from
its intersection

with
the fireball space-tim

e

boundary
known

as a
freezeout surface.

T

C
A

B

A
’

B
’

T

C

A

B

B’

A
’

x

y

t

O

FIG. 1: Schem
atic shape of the M

ach surface in the transverse

x, y
plane at z =

0
and

fixed
tim

e (upper plot), as well as its

shape
in
3d

including
the

(proper
longitudinal)

tim
e
(lower

plot). M
ach

surface �
M

is m
ade of two

parts, OCAA �T
and

OCBB �T . For m
ore explanations see text.

(ii)
Furtherm

ore, because
of the

Hubble-like
nature

of

the
radial flow, the

e�ect is strongly
peaked

at the
in-

tersection
of all three

surfaces, the
M
ach

surface
⇥
M ,

the tim
elike and

spacelike freezeout surfaces, denoted
by

⇥
t ,⇥

s respectively.

Since
each

3-d
surface

is
one

equation
in
4-d

space-

tim
e, the intersection

of three of them
are (two) 4-3=1-

d
lines, �

C , �
T , to

be
specified

below.
It
is
those

lines

ar
X

iv
:1

10
1.

48
39

v1
  [

he
p-

ph
]  

25
 J
an

 2
01

1

Large O(100 GeV) energy deposition into the 
medium should create strong shocks, and 

thus a different (larger) propagation distance 

Wednesday, September 26, 12



ALICE: very 
preliminary: 
peaks perhaps due 
to 4 points (A-B,A’B’) 
are there  
 
 

Jet/Fireball Edge should be observable!

Edward Shuryak

Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794
(Dated: January 26, 2011)

Shock/sound propagation from the quenched jets have well-defined front, separating the fireball
into regions which are and are not a�ected. While even for the most robust jet quenching observed
this increases local temperature and flow of ambient matter by only few percent at most, strong
radial flow increases the contrast between the two regions so that the di�erence should be well seen
in particle spectra at some pt, perhaps even on event-by-event basis. We further show that the e�ect
comes mostly from certain ellipse-shaped 1-d curve, the intercept of three 3-d surfaces, the Mach
cone history, the timelike and spacelike freezeout surfaces. We further suggest that this “edge” is
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well. The distribution over lost energy were found to
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significant part of jet energy is lost, in some events com-
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, overall hydrodynamical picture seem to work at LHC
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space-like freezeout surfaces.

The main idea to be presented is based on two very
simple geometrical observations:
(i) whatever complicated distorsions of the Mach cone in
exploding matter may appear, the observed spectra come
mostly from its intersection with the fireball space-time
boundary known as a freezeout surface.
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FIG. 1: Schematic shape of the Mach surface in the transverse
x, y plane at z = 0 and fixed time (upper plot), as well as its
shape in 3d including the (proper longitudinal) time (lower
plot). Mach surface �M is made of two parts, OCAA�T and
OCBB�T . For more explanations see text.

(ii) Furthermore, because of the Hubble-like nature of
the radial flow, the e�ect is strongly peaked at the in-
tersection of all three surfaces, the Mach surface ⇥M ,
the timelike and spacelike freezeout surfaces, denoted by
⇥t,⇥s respectively.
Since each 3-d surface is one equation in 4-d space-

time, the intersection of three of them are (two) 4-3=1-
d lines, �C , �T , to be specified below. It is those lines
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summary
• sounds from initial perturbations have many 

harmonics => sonograms possible.freezeout, 
eta/s

•  Many observable many-hadron correlators => 
number of sources, nonlinearities

• Rayleigh collapse of the QGP bubble: the sound of 
the QGP phase transition, possibly seen already at 
LHC (RHIC does not have long enough hadronic phase lifetime)

•  Mach cones from jets ? at pt=2-3 GeV jet edges 
are becoming observable, perhaps on e-by-e basis
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