Sounds of the Big and Little Bangs

Edward Shuryak (Stony Brook)

Sounds of the Big and Little Bangs

Edward Shuryak (Stony Brook)
we need to learn how to use the sonogram of the fireball, as sound is the only propagating mode...

Outline

Outline

- Fluctuations and higher harmonics, in Big and Little Bang

Outline

- Fluctuations and higher harmonics, in Big and Little Bang
- Multiparticle correlators, nonlinearities, coherence, number of sources

Outline

- Fluctuations and higher harmonics, in Big and Little Bang
- Multiparticle correlators, nonlinearities, coherence, number of sources
- sounds/shocks generated by Rayleigh collapse of the QGP bubbles at the end of ' 'mixed phase" (Is there enough time till freezout? looks like we have a signal)

Outline

- Fluctuations and higher harmonics, in Big and Little Bang
- Multiparticle correlators, nonlinearities, coherence, number of sources
- sounds/shocks generated by Rayleigh collapse of the QGP bubbles at the end of " mixed phase" (Is there enough time till freezout? looks like we have a signal)
- shocks and sounds generated by jets (Do we see a Mach cone now? yes)

Viewpoint

A "Little Bang" arrives at the LHC

Edward Shuryak
Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Published December 13, 2010

Viewpoint

A "Little Bang" arrives at the LHC

Edward Shuryak

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Published December 13, 2010

FIG. 1: The ALICE experiment suggests that the quark-gluon plasma remains a strongly coupled liquid, even at temperatures that are 30% greater than what was available at RHIC. The plot shows the "elliptic flow parameter" v_{2} (a measure of the coupling in the plasma) at different heavy-ion collision energies, based on several experiments (including the new data from ALICE [1]). (Note the energy scale is plotted on a logarithmic scale and spans three orders of magnitude.) The trend is consistent with theoretical predictions (pink diamonds) for an ideal liquid [4].

Viewpoint

A "Little Bang" arrives at the LHC

Edward Shuryak

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Published December 13, 2010
look at the slope, the points and curve do not match because of somewhat different centrality

FIG. 1: The ALICE experiment suggests that the quark-gluon plasma remains a strongly coupled liquid, even at temperatures that are 30% greater than what was available at RHIC. The plot shows the "elliptic flow parameter" v_{2} (a measure of the coupling in the plasma) at different heavy-ion collision energies, based on several experiments (including the new data from ALICE [1]). (Note the energy scale is plotted on a logarithmic scale and spans three orders of magnitude.) The trend is consistent with theoretical predictions (pink diamonds) for an ideal liquid [4].

Viewpoint

A "Little Bang" arrives at the LHC

Edward Shuryak

Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
Published December 13, 2010

it works at LHC perfectly!

look at the slope, the points and curve do not match because of somewhat different centrality

FIG. 1: The ALICE experiment suggests that the quark-gluon plasma remains a strongly coupled liquid, even at temperatures that are 30% greater than what was available at RHIC. The plot shows the "elliptic flow parameter" v_{2} (a measure of the coupling in the plasma) at different heavy-ion collision energies, based on several experiments (including the new data from ALICE [1]). (Note the energy scale is plotted on a logarithmic scale and spans three orders of magnitude.) The trend is consistent with theoretical predictions (pink diamonds) for an ideal liquid [4].

Two fundamental scales, describing perturbations at freezeout

(P.Staig,ES,2010)
1.The sound horizon: radius of about 6 fm

> For the Big Bang it is about 150 Mps

$$
H_{s}=\int_{0}^{\tau_{f}} d \tau c_{s}(\tau)
$$

2.The viscous horizon:

The width of the circle

$$
\begin{aligned}
& \delta T_{\mu \nu}(t)=\exp \left(-\frac{2}{3} \frac{\eta}{s} \frac{k^{2} t}{3 T}\right) \delta T_{\mu \nu}(0) \\
& k_{v}=\frac{2 \pi}{R_{v}}=\sqrt{\frac{3 T s}{2 \tau_{f} \eta}} \sim 200 \mathrm{MeV}
\end{aligned}
$$

Perturbations of the Big and the Little Bangs

Frozen sound (from the era long gone) is seen on the sky, both in CMB and in distribution of Galaxies

$$
\begin{gathered}
\frac{\Delta T}{T} \sim 10^{-5} \\
\delta \phi \sim 2 \pi / l_{\text {maximum }} \sim 1^{\circ}
\end{gathered}
$$

They are remnants of the sound circles on the sky, around the primordial density perturbations Freezeout time $\mathbf{O}(100000)$ years

Initial state fluctuations

in the positions of participant nucleons lead to perturbations of the Little Bang also
$\frac{\Delta T}{T} \sim 10^{-2}$

Freezeout time about $12 \mathrm{fm} / \mathrm{c}$ Radius of the circle about 6 fm , Comparable to the fireball size

PHYSICAL REVIEW C 80, 054908 (2009)

[^0]
the sound horizon scale is seen both in microwave radiation and in galaxy distribution

Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP ${ }^{1}$)
Observations:
Sky Maps, Systematic Errors, and Basic Results Hill 5, G. Hinshaw ${ }^{7}$, A. Kogut ${ }^{7}$, E. Komatsu ${ }^{8}$, D. Larson ${ }^{3}$, M. Limon ${ }^{9}$, S. S. Meyer ${ }^{10}$, M. R Nolta 11, N. Odegard ${ }^{5}$, L. Page ${ }^{2}$, K. M. Smith ${ }^{12}$, D. N. Spergel ${ }^{12,13}$, G. S. Tucker ${ }^{14}$, J. L. Weiland ${ }^{5}$, E. Wollack ${ }^{7}$, E. L. Wright ${ }^{15}$

Fig. 9.- The temperature (TT) and temperature-polarization(TE) power spectra for the CCDM shaded region indicates the uncertainty in the model spectrum arising from cosmic variance.

the sound horizon scale is seen both in microwave radiation and in galaxy distribution

Seven-Year Wilkinsor

Sky Maps, Sy
N. Jarosik ${ }^{2}$, C. L. Bennett ${ }^{3}$, J Hill 5, G. Hinshaw ${ }^{7}$, A. Kogut ${ }^{7}$, Nolta ${ }^{11}$, N. Odegard ${ }^{5}$, L. Page

Weila
SOOZ UR 0I [^ILILOSO/पd-onse:^!XIE

DETECTION OF THE BARYON ACOUSTIC PEAK IN THE LARGE-SCALE CORRELATION FUNCTION OF SDSS LUMINOUS RED GALAXIES

Dantel J. Eisenstein ${ }^{1,2}$, Idit Zehavi ${ }^{1}$, David W. Hogg ${ }^{3}$, Roman Scoccimarro ${ }^{3}$, Michael R Blanton ${ }^{3}$, Robert C. Nichol 4, Ryan Scranton ${ }^{5}$, Hee-Jong Seo ${ }^{1}$, Max Tegmark ${ }^{6,7}$ Zheng Zheng 8, Scott F. Anderson ${ }^{9}$, Jim Annis ${ }^{10}$, Neta Bahcall ${ }^{11}$, Jon Brinkmann ${ }^{12}$, Scott Burles 7, Francisco J. Castander ${ }^{13}$, Andrew Connolly ${ }^{5}$, Istvan Csabai ${ }^{14}$, Mamory Doi ${ }^{15}$ Masataka Fukugita ${ }^{16}$, Joshua A. Frieman ${ }^{10,17}$, Karl Glazebrook ${ }^{18}$, James E. Gunn ${ }^{11}$, John S. Hendry ${ }^{10}$, Gregory Hennessy ${ }^{19}$, Zeljóo Ivezić ${ }^{9}$, Stephen Kent ${ }^{\text {i0 }}$, Gillian R. Knapp ${ }^{11}$

SHENDRY ${ }^{10}$ Gregory Hennessy ${ }^{20}$, Zeljko TVEZIC , Stephen Kent , Gillian R. Knapp MCKAY ${ }^{22}$, Avery Meiksin ${ }^{23}$, Jeffery A. Munn ${ }^{19}$, Adrian Pope ${ }^{18}$, Michan Wí Richmond ${ }^{24}$,

David Schlegel ${ }^{25}$, Donald P. Schneider ${ }^{26}$, Kazuhiro Shimasaku ${ }^{27}$, Christopher Stoughton ${ }^{10}$, Michael A. Strauss ${ }^{11}$, Mark Subbarao ${ }^{17,28}$, Alexander S. Szalay ${ }^{18}$, István Szapudi 29, Douglas L. Túcker ${ }^{10}$, Brian Yanny ${ }^{10}$, \& Donald G. York ${ }^{17}$ Submitted to The Astrophysical Journal 12/31/2004

Fig. 3.- As Figure 2, but plotting the correlation function times s^{2}. This shows the variation of the peak at $20 h^{-1} \mathrm{Mpc}$ scales that is controlled by the redshift of equality (and hence by $\Omega_{m} h^{2}$). Varying $\Omega_{m} h^{2}$ alters the amount of large-to-small scale correlation, but boosting the large-scale correlations too much causes an inconsistency at $30 h^{-1} \mathrm{Mpc}$. The pure CDM model (magenta) is actually close to the best-fit due to the data points on intermediate scales.

Fig. 9.- The temperature (TT) anc
even-year WMAP data set. The solid lines show the predicted spectrum for the best-fit flat
model. The error bars on the data points represent measurement errors while the

Radial flow enhances the fireball surface: spectra are blue shifted toward detection with v about 0.8 c So we should see two "horns"

The peaks are at the same angles +-1
 rad (as I got) relative to the perturbation angle, but +-2 rad in correlations

One tube model
MAIN RESULT: single particle angular distribution has TWO PEAKS separated by $\Delta p h i \sim 2$

Pictures due to F.Grassi et al

CONSEQUENCE: two particle angular distribution has three peaks
Correlators and statistics: 10^{9} events 10^{6} pairs/event

It is like correlating

 Two waves in US and Chili to observe tsunami In Japan
S.Gubser, arXiv:1006.0006

found nice solution for nonlinear relativistic axially symmetric explosion of conformal matter

Working in the (τ, η, r, ϕ) coordinates with the metric

$$
\begin{equation*}
d s^{2}=-d \tau^{2}+\tau^{2} d \eta^{2}+d r^{2}+r^{2} d \phi^{2}, \tag{3.2}
\end{equation*}
$$

and assuming no dependence on the rapidity η and azimuthal angle ϕ, the 4 -velocity can be parameterized by only one function

$$
\begin{equation*}
u_{\mu}=(-\cosh \kappa(\tau, r), 0, \sinh \kappa(\tau, r), 0) \tag{3.3}
\end{equation*}
$$

Omitting the details from [14], the solution for the velocity and the energy density is

$$
\begin{gather*}
v_{\perp}=\tanh \kappa(\tau, r)=\left(\frac{2 q^{2} \tau r}{1+q^{2} \tau^{2}+q^{2} r^{2}}\right) \tag{3.4}\\
\epsilon=\frac{\hat{\epsilon}_{0}(2 q)^{8 / 3}}{\tau^{4 / 3}\left(1+2 q^{2}\left(\tau^{2}+r^{2}\right)+q^{4}\left(\tau^{2}-r^{2}\right)^{2}\right)^{4 / 3}}(3.5) \tag{3.5}
\end{gather*}
$$

Kappa is the transverse rapidity

Comoving coordinates with Gubser flow:

Gubser and Yarom, arXiv:1012.1314

$$
\delta=\delta T / T
$$

$$
\sinh \rho=-\frac{1-q^{2} \tau^{2}+q^{2} r^{2}}{2 q \tau}
$$

$$
\tan \theta=\frac{2 q r}{1+q^{2} \tau^{2}-q^{2} r^{2}}
$$

$$
\frac{\partial^{2} \delta}{\partial \rho^{2}}-\frac{1}{3 \cosh ^{2} \rho}\left(\frac{\partial^{2} \delta}{\partial \theta^{2}}+\frac{1}{\tan \theta} \frac{\partial \delta}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \delta}{\partial \phi^{2}}\right)
$$

$$
\begin{equation*}
+\frac{4}{3} \tanh \rho \frac{\partial \delta}{\partial \rho}=0 \tag{3.16}
\end{equation*}
$$

We have seen that in the short wavelength approximation we found a wave-like solution to equation 3.16, but now we would like to look for the exact solution, which can be found by using variable separation such that $\delta(\rho, \theta, \phi)=\boldsymbol{R}(\rho) \Theta(\theta) \Phi(\theta)$, then
$R(\rho)=\frac{C_{1} P_{-\frac{1}{2}+\frac{1}{6} \sqrt{12 \lambda+1}}^{2 / 3}(\tanh \rho)+C_{2} Q_{-\frac{1}{2}+\frac{1}{6} \sqrt{12 \lambda+1}}^{2 / 3}(\tanh \rho)}{(\cosh \rho)^{2 / 3}}$
$\Theta(\theta)=C_{3} P_{l}^{m}(\cos \theta)+C_{4} Q_{l}^{m}(\cos \theta)$
$\Phi(\phi)=C_{5} e^{i m \phi}+C_{6} e^{-i m \phi}$
where $\lambda=l(l+1)$ and P and Q are associated Legendre polynomials. The part of the solution depending on θ and ϕ can be combined in order to form spherical harmonics $\boldsymbol{Y}_{l_{m}}(\theta, \phi)$, such that $\delta(\rho, \theta, \phi) \propto \boldsymbol{R}_{l}(\rho) \boldsymbol{Y}_{l m}(\theta, \phi)$.

harmonics I=1..10, Temperature perturbation and velocity

Ihs (rho=-2) is initiation time and FO time is around zero

Viscosity (dashed) hardly affect The $1^{\text {st }}$ harmonic, but nearly kills the $10^{\text {th }}$!

Left:4 pi eta/s=0, 2

Note shape change

ALICE central 1\% correlators Note shape agreement No parameters, just Green Function from a delta function

The power spectrum is very sensitive to viscosity, and it has acoustic minima/ maxima (at $\mathrm{m}=7,12$ and $\mathrm{m}=9$)
perturbation inifial size ${ }^{4}$ is 0.7 fm , viscósity et $\mathrm{l} / \mathrm{s}=0,0.08,0.13^{4}, 0.16$

The summary of e-by-e hydro: Luzum: QM20I2

The summary of e-by-e hydro: Luzum: QM20I2

note that eta/s fit 0.15 is the same as we got a year ago
none of the models produce correct shape of the angular correlator, no peak at the 3ed harmonic
all of those are sum of many $\mathrm{O}(10)$ sources => small perturbations, e-by-e hydro hardly justified

So what? Why is hydro' s success for the Little Bang so exciting?

-True that already in the 19th century sound vibrations in the bulk (as well as of drops and bubbles) have been well developed (Lord Rayleigh, ...)
-But, those objects are macroscopic still have 10^20 molecules...
-Little Bang has about 10^3 particles (per unit rapidity) or 10 of them per dimension. So the first application of hydro was surprising: only astonishingly small viscosity saved it...
-And now we speak about the $10^{\text {th }}$ harmonics! How a volume cell with $\mathbf{O}(1)$ particles can act as a liquid?

coherence and nonlinearities

Many-particle correlations reveal phases!

- 2-body correlation function gives $\left|v_{n}\right|^{2}$,so no phase information
- k-body terms are preserved in averaging provided a resonance condition is fulfilled with some integers n_{i}
P.Staig, ES arXiv: I 008.3139

Bhalerao, Luzum, Ollitrault PRC 84034910 (2011)
Teaney, Yan PRC 83, 064904 (2011)

non-central collisions (ALICE data,QMI2)

$\mathrm{V}_{\mathrm{n}}(\mathrm{b})$ and $\mathrm{I}+2=3$ and some 5 -particle examples

Out of these 3 ingredients one can make many combinations Even v2 is small, and it has a

$$
v_{1}, v_{3} \sim 0.01
$$

$$
v_{2} \sim 0.1
$$ characteristic b-dependence

nonlinearity at large pt from Cooper-Fry

The crucial (but well known by now) observation is that the smallness of $v_{2} \sim 0.1 \ll 1$ can be compensated by large factor $p_{t} / T_{f} \gg 1$. While in the examples of the previous section, integrated over momenta, we have seen that higher powers of v_{2} are suppressed but still observable, at "high" p_{t} the terms with higher powers of their product $\left(v_{2} p_{4} / T_{f}\right)^{k}$ are not suppressed at all.

Example K_{3} (slide 11 of [7]) or simply the v_{1} in which the transverse momentum of p_{a} is large. In the exponent

$$
\exp \left[-\left(1 / T_{f}\right) p_{\mu} u_{\mu}\right]
$$

the velocity is a sum of all harmonics such as $u_{\mu}=u_{\mu}^{0}+$ $u_{\mu}^{1}+u_{\mu}^{2}+u_{\mu}^{3}$. Thus there is the direct first harmonics and the nonlinear terms with the same ϕ-dependence

$$
\begin{equation*}
3-2=1 \tag{9}
\end{equation*}
$$

$$
v_{1}=O\left(\epsilon_{1} p_{t}\right)+O\left(\epsilon_{2} \epsilon_{3} p_{t}^{2}\right)
$$

$$
\left(p_{t}=3 G e V / T_{f} \approx 120 \mathrm{MeV}\right) \sim 25 \gg 1
$$

ALICE data: $\mathrm{V}_{\mathrm{n}}(\mathrm{b})$ and $\mathrm{I}+2=3$ and some 5 -particle examples

Irreducable and reducable sums: example 3 particles $K_{3}=<\cos \left(3 \phi_{a}-2 \phi_{b}-\phi_{c}\right)>$ is irreducable. But a correlation of 5 particles called $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{c}$ of the type $K_{5}=<\cos \left(3 \phi_{a}+2 \phi_{b}-2 \phi_{c}-2 \phi_{d}-1 \phi_{e}\right)>$ is reducable because it can contain the previous one and simple elliptic flow correlation from two other particles.

$$
\begin{align*}
& <\cos \left(3 \phi_{a}+2 \phi_{b}-2 \phi_{c}-2 \phi_{d}-1 \phi_{e}\right)>\left.\right|_{c} \\
& =\cos \left(3 \phi_{a}+2 \phi_{b}-2 \phi_{c}-2 \phi_{d}-1 \phi_{e}\right)> \\
& -2<\cos \left(3 \phi_{a}-2 \phi_{b}-\phi_{c}\right)><\cos \left(2 \phi_{d}-2 \phi_{e}\right)> \tag{5}\\
& 3-2-1=0,2-2=0
\end{align*}
$$

Crude estimate can be made by using measured v_{n} in the place of ϵ_{n} (this assumes that hydro-determined ratios $v_{n} / \epsilon_{n}=O(1)$: one can do better, especially in respect to the signs.) As an example, one can do order-of-magnitude estimate of those two examples at a particular centrality, say 50%. The measured values are $v_{1}=210^{-2}, v_{2}=0.1, v_{3}=1.710^{-2}$. Using those one get

$$
\begin{gather*}
K_{3} \sim v_{1} v_{2} v_{3} \sim 3.410^{-5} \tag{6}\\
K_{5} \sim v_{1} v_{2}^{3} v_{3}=v_{2}^{2} K_{3} \sim 3.410^{-7}
\end{gather*}
$$

Crude estimate can be made by using measured v_{n} in the place of ϵ_{n} (this assumes that hydro-determined ratios $v_{n} / \epsilon_{n}=O(1)$: one can do better, especially in respect to the signs.) As an example, one can do order-of-magnitude estimate of those two examples at a particular centrality, say 50%. The measured values are $v_{1}=210^{-2}, v_{2}=0.1, v_{3}=1.710^{-2}$. Using those one get

 noticed in Glauber
like a boiling coffe pot,the fireball may "sing" before hadronization
The "Mini-Bangs" as Signals of the QCD Phase Transition

Edward Shuryak and Pilar Staig ${ }^{1}$

New idea: shocks/sounds from Rayleigh collapse of the QGP bubbles

H phase

phase sparation in the "mixed phase" => surface tension makes bubbles spherical $=>$ as $T<T c$ the QGP pressure is less than $p_{H}=>$ Rayleigh collapse => energy of the bubble goes into the outgoing shock
like a boiling coffe pot,the fireball may "sing" before hadronization
The "Mini-Bangs" as Signals of the QCD Phase Transition
Edward Shuryak and Pilar Staig ${ }^{1}$
New idea: shocks/sounds from Rayleigh collapse of the QGP bubbles

H phase

phase sparation in the "mixed phase" => surface tension makes bubbles spherical $=>$ as $T<T c$ the QGP pressure is less than $p_{H}=>$ Rayleigh collapse => energy of the bubble goes into the outgoing shock

like a boiling coffe pot,the fireball may "sing" before hadronization
The "Mini-Bangs" as Signals of the QCD Phase Transition
Edward Shuryak and Pilar Staig ${ }^{1}$
New idea: shocks/sounds from Rayleigh collapse of the QGP bubbles

H phase

phase sparation in the "'mixed phase" => surface tension makes bubbles spherical $=>$ as $T<T c$ the QGP pressure is less than $p_{H}=>$ Rayleigh collapse => energy of the bubble goes into the outgoing shock

Redlich-Karsch results higher cumulants, which like 6-clusters just above Tc but dislike it just below Tc

Rayleigh collapse result in emission of a shock

$u_{r}=\partial_{r} \phi=\dot{R}$

where a dot means time derivative. It leads to a solution

$$
\phi=-\frac{\dot{R} R^{2}}{r}+\operatorname{const}_{2}(t)
$$

and putting it back into Euler equation in the form (3) one finds at $r=R$ the equation for $R(t)$

$$
\begin{equation*}
\rho\left(\ddot{R} R+(2-1 / 2) \dot{R}^{2}\right)=p(r=\infty, t) \tag{7}
\end{equation*}
$$

where the $(1 / 2)$ comes from the second term of (3) and the r.h.s. is the driving pressure.
When the r.h.s. is positive the system is stable, but as it crosses into negative the collapse takes place. What was discovered by Rayleigh, even if the r.h.s. is put to zero, the equation admits simple analytic solution known as "the Rayleigh collapse"

$$
R(t) \sim\left(t_{*}-t\right)^{2 / 5}
$$

corresponding to the infinite velocity $\dot{R} \sim\left(t_{*}-t\right)^{-3 / 5}$

FIG. 1: The time evolution of the drop radius $R(t)$, for the values of $\eta / \rho=0.01 . .0 .1$ with the 0.01 step.

FIG. 2: The time evolution of the quantity $|\ddot{V}(t)|^{2}$, entering the sound radiation intensity, for the values of $\eta / \rho=$ $0.06,0.07,0.08,0.09,0.1$.

Rayleigh collapse result in emission of a shock

sonoluminescence exprts

$$
\begin{equation*}
u_{r}=\partial_{r} \phi=\dot{R} \tag{5}
\end{equation*}
$$

where a dot means time derivative. It leads to a solution

$$
\begin{equation*}
\phi=-\frac{\dot{R} R^{2}}{r}+\operatorname{const}_{2}(t) \tag{6}
\end{equation*}
$$

and putting it back into Euler equation in the form (3) one finds at $r=R$ the equation for $R(t)$

$$
\begin{equation*}
\rho\left(\ddot{R} R+(2-1 / 2) \dot{R}^{2}\right)=p(r=\infty, t) \tag{7}
\end{equation*}
$$

where the $(1 / 2)$ comes from the second term of (3) and the r.h.s. is the driving pressure.
When the r.h.s. is positive the system is stable, but as it crosses into negative the collapse takes place. What was discovered by Rayleigh, even if the r.h.s. is put to zero, the equation admits simple analytic solution known as "the Rayleigh collapse"

$$
\begin{equation*}
R(t) \sim\left(t_{*}-t\right)^{2 / 5} \tag{8}
\end{equation*}
$$

corresponding to the infinite velocity $\dot{R} \sim\left(t_{*}-t\right)^{-3 / 5}$

FIG. 1: The time evolution of the drop radius $R(t)$, for the values of $\eta / \rho=0.01 . .0 .1$ with the 0.01 step.

FIG. 2: The time evolution of the quantity $|\ddot{V}(t)|^{2}$, entering the sound radiation intensity, for the values of $\eta / \rho=$ $0.06,0.07,0.08,0.09,0.1$.

Rayleigh collapse result in emission of a shock

sonoluminescence exprts

$$
\begin{equation*}
u_{r}=\partial_{r} \phi=\dot{R} \tag{5}
\end{equation*}
$$

where a dot means time derivative. It leads to a solution

$$
\begin{equation*}
\phi=-\frac{\dot{R} R^{2}}{r}+\operatorname{const}_{2}(t) \tag{6}
\end{equation*}
$$

and putting it back into Euler equation in the form (3) one finds at $r=R$ the equation for $R(t)$

$$
\begin{equation*}
\rho\left(\ddot{R} R+(2-1 / 2) \dot{R}^{2}\right)=p(r=\infty, t) \tag{7}
\end{equation*}
$$

where the $(1 / 2)$ comes from the second term of (3) and the r.h.s. is the driving pressure.
When the r.h.s. is positive the system is stable, but as it crosses into negative the collapse takes place. What was discovered by Rayleigh, even if the r.h.s. is put to zero, the equation admits simple analytic solution known as "the Rayleigh collapse"

$$
\begin{equation*}
R(t) \sim\left(t_{*}-t\right)^{2 / 5} \tag{8}
\end{equation*}
$$

corresponding to the infinite velocity $\dot{R} \sim\left(t_{*}-t\right)^{-3 / 5}$

FIG. 1: The time evolution of the drop radius $R(t)$, for the values of $\eta / \rho=0.01 . .0 .1$ with the 0.01 step.
(a)
(b)

FIG. 22. Outgoing shock wave from a collapsing bubble: (a) Streak image of the emitted outgoing shock wave from the collapsing bubble and (b) an intensity cross section along the line $A A^{\prime}$. From Pecha and Gompf (2000).

FIG. 2: The time evolution of the quantity $|\ddot{V}(t)|^{2}$, entering the sound radiation intensity, for the values of $\eta / \rho=$ $0.06,0.07,0.08,0.09,0.1$.

Rayleigh collapse result in emission of a shock

sonoluminescence exprts

$$
u_{r}=\partial_{r} \phi=\dot{R}
$$

(5)
where a dot means time derivative. It leads to a solution

$$
\begin{equation*}
\phi=-\frac{\dot{R} R^{2}}{r}+\operatorname{const}_{2}(t) \tag{6}
\end{equation*}
$$

and putting it back into Euler equation in the form (3) one finds at $r=R$ the equation for $R(t)$

$$
\begin{equation*}
\rho\left(\ddot{R} R+(2-1 / 2) \dot{R}^{2}\right)=p(r=\infty, t) \tag{7}
\end{equation*}
$$

where the $(1 / 2)$ comes from the second term of (3) and the r.h.s. is the driving pressure.
When the r.h.s. is positive the system is stable, but as it crosses into negative the collapse takes place. What was discovered by Rayleigh, even if the r.h.s. is put to zero, the equation admits simple analytic solution known as "the Rayleigh collapse"

$$
R(t) \sim\left(t_{*}-t\right)^{2 / 5}
$$

corresponding to the infinite velocity $\dot{R} \sim\left(t_{*}-t\right)^{-3 / 5}$

8) FIG. 1: The time evolution of the drop radius $R(t)$, for the values of $\eta / \rho=0.01 . .0 .1$ with the 0.01 step.
(a)
(b)

FIG. 2: The time evolution of the quantity $|\ddot{V}(t)|^{2}$, entering the sound radiation intensity, for the values of $\eta / \rho=$ $0.06,0.07,0.08,0.09,0.1$.

FIG. 22. Outgoing shock wave from a collapsing bubble: (a) Streak image of the emitted outgoing shock wave from the collapsing bubble and (b) an intensity cross section along the line $A A^{\prime}$. From Pecha and Gompf (2000).

$$
\begin{gathered}
\mathrm{V}_{\text {shock }}=4 \mathrm{~km} / \mathrm{s} \\
\mathrm{C}_{\text {sound }}=1.4 \mathrm{~km} / \mathrm{s} \\
\mathrm{P}=40-60 \mathrm{kbar} \\
\mathrm{~T}=1 \mathrm{ev}!
\end{gathered}
$$

Sound propagating in rapidity direction

$$
\begin{aligned}
& \frac{\partial \delta(\rho)}{\partial \rho}=\frac{l(l+1) v_{s}(\rho)}{3 \cosh ^{2}(\rho)}-\frac{1}{3} i k v_{\eta}(\rho) \\
& \frac{\partial v_{s}(\rho)}{\partial \rho}=\frac{2}{3} \tanh (\rho) v_{s}(\rho)-\delta(\rho) \\
& \frac{\partial v_{\eta}(\rho)}{\partial \rho}=\frac{2}{3} \tanh (\rho) v_{\eta}(\rho)-i k \delta(\rho)
\end{aligned}
$$

The temperature perturbation at freeze-out as a function of η for different r .

The temperature perturbation at freeze-out as a function of η for different r.

Summing up those curves one gets a double-hump distribution

clusters in rapidity at LHC : first evidences for "mini-bangs"?

Summing up those curves one gets a double-hump distribution

clusters in rapidity at LHC: first evidences for "mini-bangs"?

Summing up those curves one gets a double-hump distribution

hump separation corresponds to propagation duration of about $2 \mathrm{fm} / \mathrm{c}$ (to freezeout): makes sense at LHC

sounds from quenched jets

sound from a jet on top of expanding fireball (Gubser flow): the old Mach cone

perturbed and unperturbed regions

The dashed line is that of maximal transverse flow: 4 points are to be visible

$$
\text { at } p t=2-4 \mathrm{GeV}
$$

The angular edge of the jets: matter inside is few \% HOTTER => SHOULD BE SEEN at tuned pt

- ATLAS very high energy event, in which there is no identifiable jet
- Tracks pt>2.6 GeV, cal. E>1GeV/cell
- Note the sharp edge of the away-side perturbation! Is it a "frozen sound"?

Large $\mathbf{O}(100 \mathrm{GeV})$ energy deposition into the medium should create strong shocks, and thus a different (larger) propagation distance

summary

- sounds from initial perturbations have many harmonics => sonograms possible.freezeout, eta/s
- Many observable many-hadron correlators => number of sources, nonlinearities
- Rayleigh collapse of the QGP bubble: the sound of the QGP phase transition, possibly seen already at LHC (RHIC does not have long enough hadronic phase lifetime)
- Mach cones from jets ? at $\mathrm{pt}=2-3 \mathrm{GeV}$ jet edges are becoming observable, perhaps on e-by-e basis

[^0]: Fate of the initial state perturbations in heavy ion collisions

