

Dense Matter Research with HADES

International School of Nuclear Physics 34th Course Probing Extreme States of Matter Erice/Sicily, September 16-24, 2012

Joachim Stroth, Goethe-University Frankfurt / GSI and the HADES collaboration

Motivation came from theory!

- R. Pisarski (1982): connection of phase-transition to modification of the ρ mass (dileptons) (PLB 110, 1982).
- G.E. Brown / M. Rho: Scaling of masses with χ-condensate (PRL 1989, 1991)

$$m^* \approx m \left[\left\langle \overline{q} q^* \right\rangle / \left\langle \overline{q} q \right\rangle \right]^u$$

 T. Hatsuda / S. Lee: operator product expansion PRC46(1992)R34

$$m^* = m(1 - \alpha \rho / \rho_0)$$

qq expectation in chiral power counting by U. Meissner et al. arXiv:1007.2574v1

The masses of hadrons in QCD

- Energy needed to confine a color-neutral object (qqq, qq) in the non-perturbative vacuum
- \circ The meson cloud is important for their structure

CLAS-JLAB results on baryonic resonances

• Excitation of a baryon can be carried by the meson cloud **X** Pion electro-production: $\gamma^* p \rightarrow N(1520)D13 \rightarrow \pi N$

• Strong hint for dominant contribution to the helicity amplitude $A_{3/2}$ from the meson cloud near the photo point.

In-medium self energy of the p

• For details see e.g. (reviews):

- × arXiv:9909.229, R. Rapp and J. Wambach
- X arXiv:0907.2388: S.Leupold, V. Metag, U. Mosel

In-medium spectral functions from hadronic models

- \circ Coupling of the ρ to resonance hole excitations provoke a modification of the spectral distribution
- Strong dependence on relative momentum and baryon density

W. Peters, M. Post, H. Lenske, S. Leupold, U. Mosel: Nucl.Phys. A632 (1998) 109-127

Joachim Stroth for HADES, Goethe-University / GSI

Agenda

- Virtual photons from NN bremsstrahlung
- \circ Vector meson production in p (3.5 GeV) induced reactions
- Virtual photons from Ar+KCl (1.76 AGeV) reactions
- Towards high baryon densities

Virtual photons from NN Bremsstrahlung

etet pairs from pp and np reactions (HADES)

Data from HADES pp and dp (tagged n) at 1.25 GeV/u Cocktail from HSD calculation 2008 with revised description of Bremsstrahlung

HADES collaboration, PLB 690 (2010) 118

Comparison with One Boson Exchange calculations

Data from HADES pp and dp (tagged n) at 1.25 GeV/u ($\sqrt{s} - 2m_N \approx m_\eta$) OBE calculations, different schemes for implementing gauge invariance.

One Boson Exchange calculations reproduce p+p, but not (yet) fully n+p !

Close to a theoretical explanation!

OBE calculation including pion electromagnetic form factor for the internal pion line.

R. Shyam and U. Mosel arXiv 1006.3873

The solution to the DLS puzzle

HADES data in the acceptance of DLS, compared to DLS data. HADES collaboration, PLB 663 (2008)

E. Bratkovskaya et al., PLB 2008. Modified description of bremsstrahlung in HSD inspired by Kaptari et al. September, 2012 Joachim Stroth for HADES, Goethe-University / GSI

Proton (3.5 GeV) induced reactions

pt Distributions from transport

p+p 3.5 GeV HADES data

1.2

etet Pairs from p+p and p+Nb reactions (HADES, 3.5 GeV/c)

p+p:

extraction of inclusive cross sections by fitting conventional sources to the experimental spectrum:

π°:	17 ± 2.7 ± 1 mb
Δ:	7.5 ± 1.7 mb
η :	1.14 ± 0.2 mb
ω :	0.273 ± 0.07 mb
ρ:	0.223 ± 0.06 mb

p+Nb:

 $\boldsymbol{\omega}$ production suppressed

HADES pp 3.5 GeV with GibUU

Resonance production cross sections from resonance model (based on Teis et al.) Giessen group, J. Weil, U. Mosel and colleagues: arXiv:1203.3557v2

September, 2012

Joachim Stroth for HADES, Goethe-University / GSI

Exclusive channels in p+p 3.5 GeV

 \circ pp \rightarrow pn π^+ and pp \rightarrow pp π^0 (missing mass analysis)

 $n\pi^+$ invariant mass

 $p\pi^{+}$ angular distribution

• Hadronic observables to fix the resonance contributions, analysis inspired by S. Teis et al. (Z. Phys. A356, 421 (1997))

Exclusive dilepton spectrum

 \circ pp \rightarrow ppe⁺e⁻

- Resonance contributions as fixed through exclusive pion production
- Pure QED transitions (no form factors for N- γ^* vertex)
- Baryonic resonances contribute substantially to the dilepton yield in the few GeV energy regime

Momentum binned invariant mass spectra

- First measurement of in-medium vector mesons in the relevant momentum region
- \circ ω suppressed, in-medium decays buried under ρ -like contribution

Momentum dependence of RpA

$$R_{pA} = \frac{d\sigma/dp^{pNb}}{d\sigma/dp^{pp}} \cdot \frac{A_{part}^{pp}}{A_{part}^{pNb}} \cdot \frac{\sigma_{reaction}^{pp}}{\sigma_{reaction}^{pNb}}$$

- The modification cannot be interpreted in terms of absorption only!
- Different production processes in p+A reaction
- Low P_{ee} enhancement seems to go with virtual photon mass
- \circ $\ \mbox{No}\ \mbox{P}_{ee}\ \mbox{dependence}\ \mbox{of}\ \mbox{identified}\ \mbox{ω}$

Ar+KCl 1.76 AGeV

etet pairs from Ar+KCL at 1.76 GeV/u

First observation of ω mesons in HI collisions at these energies.

HADES collaboration, Nucl.Phys.A830:483C-486C,2009

Towards high baryon density

Dilepton rates from theory

• Thermal dilepton rates ...

$$\frac{d^3 N}{dM dy dp_t} = \int_{t=0}^{\infty} \frac{d^4 \varepsilon}{d\mathbf{p}} \left[T(\mathbf{x}), \mu_B(\mathbf{x}), \overline{v}_{coll}(\mathbf{x}), ... \right] d\mathbf{x}$$

isentropic expansion

• ... or from (hybrid) transport

Joachim Stroth for HADES, Goethe–University / GSI

The QCD Phase Diagram

• Tremendous interest: RHIC-BES, NA61, NICA, and CBM/HADES!

Hadron multiplicities in Ar+KCL

- Particle yields surprisingly well described by a Statistical Hadronization Model (here THERMUS)
 - $\boldsymbol{X} \quad \boldsymbol{\varphi} \text{ not suppressed}$
 - ✗ What about the Cascade?

Unexpectedly High Cascade Yield

Are the strange quarks trapped in bubbles?

Probability (M_{ss}) to produce in an Ar+KCl collisions a strange quark pair was found to be 5 \times 10⁻²

The multiplicity for Ξ is: $M_{\Xi} \approx 0.1 M_{ss}^2$

The HADES experiment @ GSI

AutAu run in April 2012

Performance of the new RPC time-of-flight system

RPC detector built by the Coimbra team (P. Fonte et al.) NIM A602:687-690,2009, NIM A602:775-779,2009

The HADES collaboration

LIP-Laboratório de Instrumentação e Física Experimental de Partículas , 3004-516 Coimbra, Portugal Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland GSI Helmholtzzentrum für Schwerionenforschunm, 64291 Darmstadt, Germany Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany Joint Institute of Nuclear Research, 141980 Dubna, Russia Institut für Kernphysik, Johann Wolfgang Goethe-Universität, 60438 Frankfurt, Germany II.Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia Physik Department E12 & Excellence Cluster Universe, TUM, 85748 München, Germany Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3 – Université Paris Sud, F-91406 Orsay Cedex, France Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic Departamento de Física de Partículas, University of Santiago de Compostela, 15782 Santiago de C.a, Spain

summary and Outlook

- HADES has collected a collected a high-quality data on dilepton emission from A+A and elementary collisions, including exclusive analysis.
- \circ No evidence for mass shifts of ρ/ω
- Contributions from the dense/early phase a quite featureless -> strong broadening of in-medium states!(?)
- \circ Interesting observations in strangeness production
- Missing: heavy collision systems and pion induced reactions (time is running)
- Bright future for the investigation of Compressed Baryonic Matter at FAIR

Thank You!

