

QCD-like theories at finite density

34th International School of Nuclear Physics

Probing the Extremes of Matter with Heavy Ions

Erice, Sicily, 23 September 2012

Lorenz von Smekal

Contents

Introduction

• QCD with Isospin Chemical Potential ↔ Two-Color QCD

N. Strodthoff, B.-J. Schaefer & L.v.S., Phys. Rev. D85 (2012) 074007 K. Kamikado, N. Strodthoff, L.v.S. & J. Wambach, arXiv:1207.0400 [hep-ph]

• G₂ Gauge Theory at Finite Baryon Density

A. Maas, L.v.S., B. Wellegehausen & A. Wipf, arXiv:1203.5653 [hep-lat]

Summary and outlook

See also: L.v.S. in "Physics at all scales: The Renormalization Group," the 49th Schladming Winter School on Theoretical Physics, Nucl. Phys. B (PS) 228 (2012) pp. 179 - 220 [arXiv:1205.4205]

Phase Diagram

23. September 2012 | Fachbereich 5 | Institut für Kernphysik | Lorenz von Smekal | 3 UNIVERSITÄT DARMSTADT

QCD-like Theories

Functional methods and effective models:

- compare with lattice simulations where there's no sign problem
- apply to ultracold fermi gases

exploit analogies and more experimental data

TECHNISCHE UNIVERSITAT DARMSTADT

strongly correlated fermions in 2+1 dimensions

 QED_3 (semimetal-insulator transition, $N_f < 4$),

Fermion-Sign Problem

Fermion-Sign Problem

$$\left(\operatorname{Det} D(\mu)\right)^* = \operatorname{Det} D(-\mu)$$

Dyson index:

 $\beta = 2$

(b) two degenerate flavors with isospin chemical potential

fermion determinant $\rightsquigarrow \operatorname{Det}(D(\mu_I)D(-\mu_I))$

...except if:

QCD at finite isospin density

χ PT:	Son & Stephanov, Phys. Rev. Lett. 86 (2001) 592
Silver Blaze:	Cohen, Phys. Rev. Lett. 91 (2003) 222001
Lattice:	Kogut & Sinclair, Phys. Rev. D 70 (2004) 094501; PoS LAT2006 147 de Forcrand, Stephanov & Wenger, PoS LAT2007 237 Detmold, Orginos & Shi, arXiv:1205.4224
NJL:	He, Jin & Zhuang, Phys. Rev. D 71, (2005) 116001 Mu, He & Liu, Phys. Rev. D 82 (2010) 056006

Functional RG (Flow) Equations

QM Model with Isospin Chemical Potential

• *N_f* = 2 quarks & mesons with Yukawa coupling:

$$\mathcal{L} = \bar{\psi}(\partial \!\!\!/ + g(\sigma + i\gamma^5 \vec{\pi} \vec{\tau}) - \mu \gamma^0 - \mu_I \tau_3 \gamma^0)\psi + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} (\partial_\mu \pi_0)^2 + U(\rho^2, d^2) - c\sigma + \frac{1}{2} \left((\partial_\mu + 2\mu_I \delta^0_\mu) \pi_+ (\partial_\mu - 2\mu_I \delta^0_\mu) \pi_- \right)$$

• chemical potentials:

$$\mu_u = \mu + \mu_I \quad \mu_d = \mu - \mu_I$$

 $\mu \gg \mu_I$: $\mu_I \rightsquigarrow$ imbalance between up and down $\mu_I \gg \mu$: $\mu \rightsquigarrow$ imbalance between up and anti-down

• $\mu = 0$, map to QMD model for QC₂D:

$$N_c: 3 \to 2 \quad (\psi_u, \psi_d) \to (\psi_r, \tau_2 C \bar{\psi}_g) \qquad \mu_I \to \mu$$
$$\pi_+, \pi_- \to \Delta, \Delta^* \qquad \pi_0 \to \vec{\pi}$$

Two-Color QCD

no CEP at $\mu\sim$ 2.5 m_π !

N. Strodthoff, B.-J. Schaefer & L.v.S., Phys. Rev. D85 (2012) 074007

Two-Color QCD

QCD with Isospin Chemical Potential

 QM Model with fluctuating chiral & pion condensates

need 2 fields in effective potential

$$U = U(\rho^2, d^2)$$
, but replace $\rho^2 = \sigma^2 + \vec{\pi}^2$ and $d^2 = |\Delta|^2$ by $\rho^2 = \sigma^2 + \pi_0^2$ and $d^2 = \pi_1^2 + \pi_2^2 = \pi_+ \pi_-$

K. Kamikado, N. Strodthoff, L.v.S. & J. Wambach, arXiv:1207.0400

QCD with Isospin Chemical Potential

Detmold, Orginos & Shi, arXiv:1205.4224 [hep-lat]

QCD with Isospin Chemical Potential

• *T* = 0 isospin density - lattice QCD:

Detmold, Orginos & Shi, arXiv:1205.4224 [hep-lat]

Kamikado, Strodthoff, LvS & Wambach, arXiv:1207.0400

1st pion cond 2nd pion cond

• Full mesonic flow (2 dimensional):

Kamikado, Strodthoff, LvS & Wambach, arXiv:1207.0400

• Full mesonic flow (2 dimensional):

Kamikado, Strodthoff, LvS & Wambach, arXiv:1207.0400

• Full mesonic flow (2 dimensional):

1st order sigma SB region

second 1st order

0.8

 $\mu_{l}[m_{\pi}]$

0.6

CEP

1.2

pion cond.

• compare:

• Full flow with mesonic fluctuations:

G₂ is real:

Dirac operator \mathcal{D} has antiunitary symmetry S, with $S^2 = -1$ (symplectic, $\beta = 4$).

• no sign problem

real and positive for single flavor: $SU(2) \rightarrow U_B(1)$ 2 Goldstone bosons: scalar (anti)diquarks

- O(3) symmetric effective potential $U = U(\phi^2)$ where $\vec{\phi} = (\sigma, \text{Re}\Delta, \text{Im}\Delta)$
- diquark condensation as in QC₂D
- but have fermionic baryons also

as QCD with adjoint quarks

Holland, Minkowski, Pepe & Wiese, Nucl. Phys. B 668 (2003) 207 Wellegehausen, Wipf & Wozar, Phys. Rev. D 83 (2011) 114502 Maas, LvS, Wellegehausen & Wipf, arXiv:1203.5653

• breaks down to QCD

$$\begin{array}{c} \text{Higgs} \\ G_2 \longrightarrow SU(3) \end{array}$$

coset:

$$G_2/SU(3) \sim SO(7)/SO(6) \sim S^6$$

$$(7) \rightarrow (3) \oplus (\bar{3}) \oplus (1) \checkmark^{\mathsf{massive Higgs}}$$
$$(14) \rightarrow (3) \oplus (\bar{3}) \oplus (8) \backsim_{\mathsf{gluons}}$$
heavy gauge

• phase diagram with 1 flavor dynamcial Wilson fermion

Maas, LvS, Wellegehausen & Wipf, arXiv:1203.5653.

• finite baryon density (bosonic and fermionic)

Maas, LvS, Wellegehausen & Wipf, arXiv:1203.5653.

onset of diquark condensation:

Bjoern Wellegehausen, PhD thesis, Jena 2012.

Summary & Outlook

0.15

0.

b.05

• Finite Isospin Density in QCD and Baryon Density in Two-Color QCD

- detailed understanding of phase diagram
- functional methods and models vs. lattice MC
- analogies with ultracold fermi gases
 BEC-BCS crossover, population imbalance
 with universal phase diagram...
- Phase Diagram of G₂ Gauge Theory
 - no sign problem fermionic baryons
- Fermions in 2+1 Dimensions
 - quantum phase transitions, transport properties, topological aspects...

QCD Phase Diagram

European Commission

- refined functional methods & models, baryonic dofs, finite volume...

Thank You for Your Attention!

Forschungsgemeinschaft

Deutsche