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• compare with lattice simulations
where there’s no sign problem

Functional methods and effective models: QCD at finite isospin density

Figure 23: The phase diagram of the homogeneous two-component Fermi mixture in the
unitarity limit, containing the superfluid Sarma (S) and BCS phases, the normal phase (N)
and a forbidden region (FR). The solid black line is the result of the RG calculations. The
dots with error bars are experimental data along the phase boundaries as determined by Shin
et al. [72]. The dashed and dashed-dotted lines are only guides to the eye.

polarizations than the one from mean-field theory. As a result, the RG calcu-

lation is in much better agreement with experiments. We believe that the RG

captures two main shortcomings of the mean-field theory, namely it takes into

account fermionic self-energy effects and screening effects. Actually, the level

of agreement with experiment is rather remarkable considering the simplicity of

our RG. To some extent this is a coincidence, since there are many couplings

whose renormalization we have ignored here although they could have a quan-

titative influence, such as e.g. the effective mass of the fermions. In Ref. [190],

we for example also included the center-of-mass frequency dependence of the

interaction and found Pc3 = 0.24 and Tc3 = 0.063 TF+. Moreover, the results of

the RG are also sensitive to the precise way in which we flow, so that the results

depend for example on the intermediate cut-off �Λ�
0. We pick Λ�

0 such that the

high-energy two-body physics has been integrated out to a large extent, but the

many-body physics not yet. This means that we take Λ�
0 to be a few times the

Fermi wavevector. However, this procedure has some arbitrariness, and in an

exact treatment the results should be fully independent of Λ�
0. We note that

in Fig. 23, the dashed and dashed-dotted lines have the same meaning as in

the homogeneous phase diagram of Fig. 12. However, with our current RG for

the normal phase these lines cannot be calculated, since for this a treatment of

the superfluid phase would be required. Finally, we mention that at zero tem-

perature, the Monte-Carlo treatment of Lobo et al. predicts a quantum phase

transition from the equal-density superfluid to the polarized normal phase at

a critical imbalance of p = 0.38, as was discussed in Section 4.3.2 [150]. This

value seems to be in reasonably good agreement with experiments as seen from

Fig. 23.

72

polarised fermi gas at unitarity

graphene

• apply to ultracold fermi gases
exploit analogies and 
more experimental data

QED3 (semimetal-insulator transition, Nf < 4),

electronic properties of Graphene (half-filling, Nf = 2) – SFB 634

• strongly correlated fermions in 2+1 dimensions
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D(µ) = γµ(∂
µ + iAµ)− γ0µ

γ5D(µ)†γ5 = D(−µ)⇒
�
DetD(µ)

�∗
= DetD(−µ)

• Dirac operator:
anti-Hermitian Hermitian

or

• in general, fermion-sign problem, except if:

T 2 = ±1(a) anti-unitary symmetry TD(µ)T−1 = D(µ)∗

T = ΣCγ5, T
2 = 1

fermion color representation:

(i) pseudo-real

color, Σ2 = −1

charge conjugation, C2 = −1

β = 4T = Cγ5, T
2 = −1(ii) real

β = 1

Dyson index:

 two-color QCD
→ B.-J. Schaefer’s talk

adjoint QCD, or G2-QCD 
→ later this talk



β = 2

Silver Blaze:
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� Det
�
D(µI)D(−µI)

�
(b) two degenerate flavors with isospin chemical potential

fermion determinant

• QCD with adjoint quarks,
  or G2-QCD 

...except if:
�
DetD(µ)

�∗
= DetD(−µ)

 QCD at finite isospin density

Dyson index:

NJL:

Lattice:

Son & Stephanov, Phys. Rev. Lett. 86 (2001) 592

Kogut & Sinclair, Phys. Rev. D 70 (2004) 094501; PoS LAT2006 147
de Forcrand, Stephanov & Wenger, PoS LAT2007 237
Detmold, Orginos & Shi, arXiv:1205.4224

He, Jin & Zhuang, Phys. Rev. D 71, (2005) 116001
Mu, He & Liu, Phys. Rev. D 82 (2010) 056006

Cohen, Phys. Rev. Lett. 91 (2003) 222001

χPT:



extended mean 
field (eMF)

Ω(T, µ) , at

φmin = �φ�T,µ
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Wetterich, Phys. Lett. B 301 (1993) 90

Γ[φj ] = (j,φj)− lnZ[j]Effective action:
Legendre transform

Γ(n)(x1, . . . xn)

1PI vertex functions

grand potential

∂tΓk[φ] = 1

2

⊗

−

⊗

k∂kΓk[φ]

bosons fermions



• µ = 0, map to QMD model for QC2D:

Nc: 3 → 2 (ψu, ψd) → (ψr, τ2Cψ̄g) µI → µ

π+, π− → ∆,∆∗ π0 → �π

23. September 2012  |  Fachbereich 5  |  Institut für Kernphysik  |  Lorenz von Smekal  |  

QM Model with Isospin Chemical Potential
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• Nf = 2 quarks & mesons with Yukawa coupling:

µI � µ : µ � imbalance between up and anti-down

µ � µI : µI � imbalance between up and down

• chemical potentials:
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Two-Color QCD
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• QMD model phase diagram

purely mesonic

CEP

µ ≈ 2.5mπ

• 1st order chiral transition and CEP  at  

• no low-T 1st order transition,

no CEP at µ ∼ 2.5 mπ !
N. Strodthoff, B.-J. Schaefer & L.v.S., Phys. Rev. D85 (2012) 074007

with collective baryonic fluctuations

diquark
condensation



�q̄q�

�qq�

T [MeV]
µ/mπ

normalised quark and diquark condensates
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• QMD model phase diagram

Mq
�

µ:

BC
S-l

ike

Mq
>

µ:

BE
C-l

ike

N. Strodthoff, B.-J. Schaefer & L.v.S., Phys. Rev. D85 (2012) 074007

TCP

• Tricritical point predicted in:
Splittorff, Toublan & Verbaarschot, 
Nucl. Phys. B 620 (2002) 290
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• QM Model with fluctuating 
   chiral & pion condensates

pion condensation

χSB

U = U(ρ2, d2), but replace ρ2 = σ2 + �π2 and d2 = |∆|2
by ρ2 = σ2 + π2

0 and d2 = π2
1 + π2

2 = π+π−

• need 2 fields in effective potential

K. Kamikado, N. Strodthoff, L.v.S. & J. Wambach, arXiv:1207.0400
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• T = 0 isospin density - lattice QCD:

Detmold, Orginos & Shi, arXiv:1205.4224 [hep-lat]
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Detmold, Orginos & Shi, arXiv:1205.4224 [hep-lat]

• T = 0 isospin density - lattice QCD:



T = 0
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Baryon & Isospin Chemical Potential
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• Fermionic flow (extended mean-field):
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• Full mesonic flow (2 dimensional):
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Kamikado, Strodthoff, LvS & Wambach, arXiv:1207.0400



23. September 2012  |  Fachbereich 5  |  Institut für Kernphysik  |  Lorenz von Smekal  |  

Baryon & Isospin Chemical Potential

16

• Full mesonic flow (2 dimensional):
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• Full mesonic flow (2 dimensional):

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2

µI[m ]
 0

 50
 100

 150
 200

 250
 300

µ[MeV]

 0
 50

 100
 150
 200
 250

T[MeV]
1st order sigma

SB region
second 1st order

CEP
pion cond.

 0

 50

 100

 150

 200

 250

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

T[
M

eV
]

µI[m ]

µ=0 MeV
µ=150 MeV
µ=200 MeV
µ=250 MeV
µ=300 MeV

fixed µI = mπ

µ for (up/anti-down) imbalance



µI = mπ

pion condensation

TCP
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• Fermionic flow (extended mean-field):
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Figure 10: Quasiparticle dispersions for a) the BCS superfluid phase and b) the Sarma
superfluid phase. The upper branch gives the dispersion for the spin-down quasiparticles,
that consist of spin-down particles and spin-up holes. The lower branch gives the dispersion
for the spin-up quasiparticles, that consist of spin-up particles and spin-down holes. These
dispersions have their minima given by |∆| ± h at wavevectors for which �k = µ. In the
BCS case the quasiparticle spectra are gapped. In the Sarma case, a part of the spin-up
quasiparticle branch is below zero, such that its filling lowers the ground-state energy. As a
result, additional spin-down holes and spin-up particles enter the ground state leading to a
polarized superfluid.

also be a local minimum, so that there is both a local maximum and a global
minimum at values of ∆ unequal to zero. As is seen in Figs. 9(c) and (d), this
can cause a discontinuous, or first-order, phase transition. The extrema of the
thermodynamic potential density can be found by differentiating with respect
to ∆∗ and equating the result to zero. As the above discussion implies, there
is always one solution given by ∆ = 0. The other solutions are found from the
so-called BCS gap equation

1

V
�

k

�
1− f(�ω+,k)− f(�ω−,k)

2�ωk
− 1

2�k

�
= 0 , (29)

which thus has either one or two solutions. The study of the extrema of the
thermodynamic potential allows for a determination of the phase diagram as a
function of the chemical potentials and the temperature, which we perform in
Section 3.4.

3.3. Sarma phase

But first, let us briefly discuss in more detail the homogeneous superfluid
phases that we encounter in the spin-imbalanced case. Below the critical tem-
perature Tc, we have that |∆| �= 0, in which case we distinguish between two
possibilities. Namely, we have either that h < |∆|, or that h > |∆|. The first
case we call a BCS superfluid, because, as we see next, it corresponds to the
fully-gapped situation known from ordinary BCS superconductivity in metals
[2]. The second case leads to a so-called Sarma superfluid, which gives rise to
a gapless quasiparticle dispersion for the majority spin species �ωk,+, as was
first discussed by Sarma [84]. The Sarma phase is sometimes also referred to
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• Fermionic flow (extended mean-field):
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Figure 12: a) The phase diagram of the homogeneous two-component Fermi mixture in the
unitarity limit, consisting of the gapless superfluid Sarma phase (S), the gapped superfluid
BCS phase and the normal phase (N). The transition from superfluid to normal can be either
continuous (full line) or discontinuous (dashed line), and the two possibilities meet at the
tricritical point (TCP). Between the BCS regime and the Sarma regime of superfluidity there
is a crossover (dash-dotted line). Both the temperature T and half the chemical potential
difference h are scaled with the average chemical potential µ. b) The same diagram but now
as a function of the polarization p = (n+ − n−)/(n+ + n−) and with the temperature scaled
by the Fermi temperature of the majority species TF+ = �F+/kB. Due to the discontinuous
nature of the transition below the tricritical point there is a jump in the polarization, causing a
forbidden region (FR) in the phase diagram where the gas is unstable against phase separation.

37

Gubbels, Stoof, arXiv:1205.0568

• compare:
Imbalanced Fermi Gases

Figure 10: Quasiparticle dispersions for a) the BCS superfluid phase and b) the Sarma
superfluid phase. The upper branch gives the dispersion for the spin-down quasiparticles,
that consist of spin-down particles and spin-up holes. The lower branch gives the dispersion
for the spin-up quasiparticles, that consist of spin-up particles and spin-down holes. These
dispersions have their minima given by |∆| ± h at wavevectors for which �k = µ. In the
BCS case the quasiparticle spectra are gapped. In the Sarma case, a part of the spin-up
quasiparticle branch is below zero, such that its filling lowers the ground-state energy. As a
result, additional spin-down holes and spin-up particles enter the ground state leading to a
polarized superfluid.
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• Full flow with mesonic fluctuations:

• stable Sarma phase down to T = 0 
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• Full flow with mesonic fluctuations:

• stable Sarma phase down to T = 0 
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• compare:
Chiral Transition

Figure 23: The phase diagram of the homogeneous two-component Fermi mixture in the
unitarity limit, containing the superfluid Sarma (S) and BCS phases, the normal phase (N)
and a forbidden region (FR). The solid black line is the result of the RG calculations. The
dots with error bars are experimental data along the phase boundaries as determined by Shin
et al. [72]. The dashed and dashed-dotted lines are only guides to the eye.

polarizations than the one from mean-field theory. As a result, the RG calcu-

lation is in much better agreement with experiments. We believe that the RG

captures two main shortcomings of the mean-field theory, namely it takes into

account fermionic self-energy effects and screening effects. Actually, the level

of agreement with experiment is rather remarkable considering the simplicity of

our RG. To some extent this is a coincidence, since there are many couplings

whose renormalization we have ignored here although they could have a quan-

titative influence, such as e.g. the effective mass of the fermions. In Ref. [190],

we for example also included the center-of-mass frequency dependence of the

interaction and found Pc3 = 0.24 and Tc3 = 0.063 TF+. Moreover, the results of

the RG are also sensitive to the precise way in which we flow, so that the results

depend for example on the intermediate cut-off �Λ�
0. We pick Λ�

0 such that the

high-energy two-body physics has been integrated out to a large extent, but the

many-body physics not yet. This means that we take Λ�
0 to be a few times the

Fermi wavevector. However, this procedure has some arbitrariness, and in an

exact treatment the results should be fully independent of Λ�
0. We note that

in Fig. 23, the dashed and dashed-dotted lines have the same meaning as in

the homogeneous phase diagram of Fig. 12. However, with our current RG for

the normal phase these lines cannot be calculated, since for this a treatment of

the superfluid phase would be required. Finally, we mention that at zero tem-

perature, the Monte-Carlo treatment of Lobo et al. predicts a quantum phase

transition from the equal-density superfluid to the polarized normal phase at

a critical imbalance of p = 0.38, as was discussed in Section 4.3.2 [150]. This

value seems to be in reasonably good agreement with experiments as seen from

Fig. 23.
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polarised fermi gas at unitarity

Strodthoff & LvS, in preparation

part. pol. superfluid near interface in fermi gases?

Gubbels, Stoof, arXiv:1205.0568
Shin et al., Nature 451 (2008) 689



massive Higgs

heavy gauge
gluons

Dirac operator D has
antiunitary symmetry S,

with S2 = −1 (symplectic, β = 4).
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Maas, LvS, Wellegehausen & Wipf, arXiv:1203.5653

G2 is real:

real and positive for single flavor:

2 Goldstone bosons: scalar (anti)diquarks

SU(2) → UB(1)

• no sign problem

U = U(φ2) where �φ = (σ,Re∆, Im∆)

• O(3) symmetric effective potential 

• diquark condensation as in QC2D

as QCD with adjoint quarks

• but have fermionic baryons also

Holland, Minkowski, Pepe & Wiese, 
Nucl. Phys. B 668 (2003) 207
Wellegehausen, Wipf & Wozar, Phys. 
Rev. D 83 (2011) 114502

G2 −→ SU(3)
Higgs

coset:

(7) → (3)⊕ (3̄)⊕ (1)

(14) → (3)⊕ (3̄)⊕ (8)

G2/SU(3) ∼ SO(7)/SO(6) ∼ S
6

• breaks down to QCD
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Maas, LvS, Wellegehausen & Wipf, arXiv:1203.5653.

• phase diagram with 1 flavor dynamcial Wilson fermion 
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• finite baryon density (bosonic and fermionic)
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• onset of diquark condensation:
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Figure 23: The phase diagram of the homogeneous two-component Fermi mixture in the
unitarity limit, containing the superfluid Sarma (S) and BCS phases, the normal phase (N)
and a forbidden region (FR). The solid black line is the result of the RG calculations. The
dots with error bars are experimental data along the phase boundaries as determined by Shin
et al. [72]. The dashed and dashed-dotted lines are only guides to the eye.

polarizations than the one from mean-field theory. As a result, the RG calcu-

lation is in much better agreement with experiments. We believe that the RG

captures two main shortcomings of the mean-field theory, namely it takes into

account fermionic self-energy effects and screening effects. Actually, the level

of agreement with experiment is rather remarkable considering the simplicity of

our RG. To some extent this is a coincidence, since there are many couplings

whose renormalization we have ignored here although they could have a quan-

titative influence, such as e.g. the effective mass of the fermions. In Ref. [190],

we for example also included the center-of-mass frequency dependence of the

interaction and found Pc3 = 0.24 and Tc3 = 0.063 TF+. Moreover, the results of

the RG are also sensitive to the precise way in which we flow, so that the results

depend for example on the intermediate cut-off �Λ�
0. We pick Λ�

0 such that the

high-energy two-body physics has been integrated out to a large extent, but the

many-body physics not yet. This means that we take Λ�
0 to be a few times the

Fermi wavevector. However, this procedure has some arbitrariness, and in an

exact treatment the results should be fully independent of Λ�
0. We note that

in Fig. 23, the dashed and dashed-dotted lines have the same meaning as in

the homogeneous phase diagram of Fig. 12. However, with our current RG for

the normal phase these lines cannot be calculated, since for this a treatment of

the superfluid phase would be required. Finally, we mention that at zero tem-

perature, the Monte-Carlo treatment of Lobo et al. predicts a quantum phase

transition from the equal-density superfluid to the polarized normal phase at

a critical imbalance of p = 0.38, as was discussed in Section 4.3.2 [150]. This

value seems to be in reasonably good agreement with experiments as seen from

Fig. 23.
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• Finite Isospin Density in QCD and Baryon Density in Two-Color QCD 
- detailed understanding of phase diagram
- functional methods and models vs. lattice MC
- analogies with ultracold fermi gases
  BEC-BCS crossover, population imbalance 
  with universal phase diagram...   
 • Phase Diagram of G2 Gauge Theory
- no sign problem − fermionic baryons 

• Fermions in 2+1 Dimensions
- quantum phase transitions, transport properties, topological aspects... 

- refined functional methods & models, baryonic dofs, finite volume...
• QCD Phase Diagram
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