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The aim is to provide input for hydrodynamics, plus to address
a fundametal theory problem

Thermalization requires massive entropy production at early
stages (< 1 fm/c)

But QCD is (basically) time-reversal invariant. Entropy is
typically produced by measurements⇒ Coarse-graining.

How can entropy be produced at all before any measurement
takes place ?
How can it be produced so fast ?
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Coarse graining in non-linear mechanics
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Under time evolution the phase space volume is conserved
The finite resolution of any measurement implies an
increase in phase space volume
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A related issue: The information problem of black-hole physics

T=0   S=0
BHH

BHH

T   = 0   S       = 0

T   = 0   S       = 0

If the S-Matrix is unitary Sinital = Sfinal .
But the Bekenstein-Hawking entropy is SBH = kBA/(4G).
Entropy production corresponds to information loss. Within
AdS/CFT entropy generaton in the boundary theory (QFT) and
information loss in 5-dim are equivalent.
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Question: Does thermalization of gauge theories depend
crucially on the initial state ?
If Yes: We would have a problem because fluctuations are
large according to theory⇒ Berndt Müller’s talk
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If No: Generic calculations should give sensible results
⇒ classical field theory and/or AdS/CFT could catch the
essential physics
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Different stages of entropy production in a HIC
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1. approach: Kolmogorov Sinai entropy etc.

Non-linear Dynamics and Quantum Decoherence

The Lyapunov exponents of a classical theory are determine
numerically. The Kolmogorov-Sinai entropy is defined as

hKS =
∑

i,λi>0

λi

The “Kolmogorov-Sinai entropy” is no entropy, but an entropy
growth rate.
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a generic picture
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d t

In the linear phase: dS
dt = hKS

hKS seems to play the same role in quantum theories !
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Example: Standard map
M. Baranger, Chaos, Solitons and Fractals 13(2002)471

q,p → Q,P : P = p + q sin(2πq)
2π [mod 1]; Q = q + P [mod 1]
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Husimi function and Wehrl entropy

The Husimi function

H∆(p, x ; t) =

∫
dp′ dx ′

π~
exp

(
− 1
~∆

(p − p′)2 − ∆

~
(x − x ′)2

)
W (p′, x ′; t)

The Wehrl entropy

SH,∆(t) = −
∫

dp dx
2π~

H∆(p, x ; t) ln H∆(p, x ; t); lim
t→∞

dSH,∆

dt
= hKS

Crucial assumption: Classical and quantum system have
similar hKS
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Classical YM theory
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Different distance measures give the same result.
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After many detailed studies we concluded

τeq ≈ 2 fm/c

with substantial theoretical uncertainties

and that a value below 1 fm/c is very unlikely

Presently we (i.e. our Japanese collegues) study the
dependence on initial conditions
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2. approach: Equilibration times from AdS/CFT ?

Maldacena Conjecture:
Solving Einstein’s equations in five dimensions with negative
constant curvature
is dual to
Solving SU(N) supersymmetric (N = 4), conformal gauge
theory at strong coupling for N→∞
How can this work ?

QCD is nearly conformal at large temperature T > ΛQCD

Fermionic degrees of freedom are less important at high
temperature
Thermodynamic quantities show only a weak N
dependence
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Two possible approaches:
Try to find the dual of QCD⇒ IHQCD Gürsoy, Kiritsis et al.
Fix parameters by comparison with lattice
Analyse quantities which are insensitive to details

We do both

We analyse different SU(N) groups and 1+3 as well as 1+2
dimensions (AdS4 × S6; solid state physics, quantized Hall
effect, superconductivity, etc.)

We have a large lattice group (SFB/TR-55, STRONGnet,
S. Kovalevskaja group (P. Buividovich, ...)
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Thermodynamic quantities for 1+3 dimensions
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Thermodynamic quantities for 1+2 dimensions
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Earlier work: Probe black brane formation with a string or
membrane.

event horizon

falling shell
probing string

fire ball

with de Boer, Craps, Keski-Vakkuri, Bernamonti, Staessens,
Balasubramanian, Shigemori, Copland
results from 1012.4753 and 1103.2683
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The change in geodetic length is sensitive to equal time
correlators of high dimension gluonic operators which are in
turn sensitive to thermalization.

〈O(tshell , x)O(tshell ,0)〉shell

〈O(tshell , x)O(tshell ,0)〉AdS
≈ e−∆δL(tshell ,x)
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We solved analytically and numerically different cases:
AdS3 ∼ CFT (1 + 1), AdS4 ∼ CFT (1 + 2), AdS5 ∼ CFT (1 + 3)
and analyzed how the length of the geodesic/the area of the
surface approaches its thermal value, as a function of ` and t0.
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Observations

Thermalization is approached as fast as compatible with
causality.
For heavy ion collisions this implies
τ ∼ 1/(2Qs) ∼ 0.1fm/c
Short distances thermalize first, top-down rather than
bottom-up thermalization
Unavoidable in the AdS dual theory. A fundamental
difference between strong and weak coupling ???
Confirmed by completely different holographic
investigations
i.e. S. Caron-Huot, P.M. Chesler D. Teaney 1102.1073
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A new project: QCD in a background magnetic field

Extensively studies in AdS/CFT in view of solid state
applications

Easy to implement on the lattice: Modify gauge links according
to

uy (n) = eia2qBnx ect .

Of interest in view of the strong magnetic fields produced in
HICs (CME etc.)
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QCD phase transition in a background B field
Only simulation with small quark masses (G. Endrodi
(Regensburg); collaboration with Budapest-Wuppertal)

renormalized up quark condensate, its susceptibility and the
strange susceptibility
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〈ψ̄fσµνψf 〉 = qf Fµν · τf

The quarks in the finite T vacuum are diamagnetic (as expected) tbp
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∆E = (〈E2
⊥(QCD)〉B − 〈E2

⊥(QCD)〉0)− (〈E2
‖ (QCD)〉B − 〈E2

‖ (QCD)〉0)

-0
.0

0
1

 0
 0

.0
0
1

 0  0.2  0.4  0.6  0.8  1

a
n

is
o
tr

o
p
ie

s
 [
G

e
V

4
]

eB [GeV2]

ΔE

ΔB

243x32; a=0.29 fm

243x32; a=0.22 fm

323x48; a=0.15 fm

403x48; a=0.125 fm

The gluon field strength components in a magnetic field at T = 0 tbp

26 / 29



This has many interesting aspects

Bosons are paramagnetic, fermions are diamagnetic (was
related to the different signs in the QCD β function). Effective
models with only bosonic degrees of freedom tend to fail.

We see a drop of Tc as function of B. It was suggested that the
physics might be: Large B leads to 1+1 dimensional dynamics
⇒ Mermin-Wagner-theorem⇒ no chiral symmetry breaking
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Conclusions

Understanding entropy production during thermalization in
HICs is a problem of fundamental importance.
Thermalization via non-linear dynamics and coarse
graining with ~ needs τ ≈ 2fm/c.
Thermalization for strong coupling as described by
AdS/CFT is top-down and very fast τ ≈ 0.1fm/c.
AdS/CFT and LQCD could form a powerful team
Projects

Classical YM dynamics: Influence of initial conditions
Equilibration time for fluctuations from AdS/CFT
QCD in a constant B field⇒ non-leading AdS corrections
A new way to determine transport coefficients from lattice
QCD:
Fit AdS parameters to 〈TµνTµν〉LATTICE ⇒ η/s > 1/(4π)
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