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Anisotropic Flow at the LHC as 
measured by ALICE
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1) Elliptic Flow

2) What do we learn from various particle species?

3) Higher harmonics 

4) What’s next?
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In a Heavy Ion Collision
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• the system in coordinate space 
configuration is anisotropic (for a 
non-central collision almond shape). 
However, initial momentum 
distribution isotropic (spherically 
symmetric)

• interactions among constituents 
generate a pressure gradient which 
transforms the initial coordinate space 
anisotropy into the observed 
momentum space anisotropy → 
anisotropic flow

• self-quenching → sensitive to early 
stage

� =
⇥y2 � x2⇤
⇥y2 + x2⇤

v2 = �cos 2�⇥

Elliptic Flow
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Ideal hydro gets the magnitude for more central collisions
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Flow at RHIC



RHIC Scientists Serve Up “Perfect” Liquid
New state of matter more remarkable than predicted -- 
raising many new questions
April 18, 2005
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The Perfect Liquid?
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?

What to expect at the LHC: still the perfect liquid 
or approaching a viscous ideal gas?
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The Perfect Liquid?
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CERN, November 26, 2010:
‘the much hotter plasma produced at the LHC behaves as a 
very low viscosity liquid (a perfect fluid)..’
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Physics 3, 105 (2010)

RHIC, the higher energy jets available at the LHC would
travel further through the plasma before completely
dissipating their energy, but the ATLAS measurements
showed that the stopping distance for a jet is compa-
rable to the radius of lead nuclei used in the collisions.
(The deposited energy/momentum goes into a shock or
sound wave [7, 8], which still has to propagate for some
time, until the final freeze-out, when it turns into the
observed hadrons.) One theory that could explain this
surprising result is a strong coupling theory called the
AdS/CFT correspondence, a spin-off from string theory
that relates the strong-coupling limit of quarks and glu-
ons to a theory of gravity in a higher dimension. In the
AdS/CFT picture, the equilibration of the quark-gluon
plasma is connected to the production of a black hole,
and jet quenching can be mapped to falling into this
black hole (for reviews, see, e.g., Refs. [9, 10]). Predic-
tions based on this theory suggest that the stopping dis-
tance of a jet varies as E1/3

⇥ /T4/3 [6], which means that
at the LHC, a jet with E⇥ = 100 GeV stops at the same
distance as a 35 GeV jet at RHIC—similar to what AT-
LAS observed. Collectively, these results from ALICE
and ATLAS are providing new evidence that the quark-
gluon plasma produced at the LHC is still strongly cou-

pled. After just three weeks of the LHC run with heavy
ions, we are witnessing a very exciting start of this new
era.
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Viewpoint

A “Little Bang” arrives at the LHC

Edward Shuryak
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The first experiments to study the quark-gluon plasma at the LHC reveal that even at the hottest temperatures
ever produced at a particle accelerator, this extreme state of matter remains the best example of an ideal liquid.
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Elliptic Flow of Charged Particles in Pb-Pb Collisions at

⇧
sNN = 2.76 TeV

K. Aamodt et al. (ALICE Collaboration)
Phys. Rev. Lett. 105, 252302 (2010) – Published December 13, 2010

Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at
⇧

sNN = 2.76 TeV with the
ATLAS Detector at the LHC
G. Aad et al. (ATLAS Collaboration)
Phys. Rev. Lett. 105, 252303 (2010) – Published December 13, 2010

In November, the Large Hadron Collider (LHC) at
CERN began its first heavy-ion run, producing lead-lead
collisions with the highest center of mass energy ever
achieved. Now, a pair of papers appearing in Physical
Review Letters, from the ALICE [1] and ATLAS [2] exper-
iments at the LHC, presents a first glimpse of what new
information these high-energy collisions will offer about
the quark-gluon plasma—the state of matter believed to
have filled the universe at the time of the Big Bang. The
ALICE results strongly indicate that the quark-gluon
plasma remains a nearly ideal liquid, as seen earlier at
the Relativistic Heavy Ion Collider (RHIC), even at sig-
nificantly higher energies. Complementing this work,
the ATLAS team has shown that even very high energy
jets of particles emitted from the collision lose a large
fraction of their energy into the quark-gluon plasma
(and are sometimes completely dissipated), a sign that
the quarks and gluons are strongly interacting with the
hotter plasma.

The quark-gluon plasma (QGP) is the extreme state
of matter that occurs above a critical temperature Tc ⇥
170 MeV (2 trillion degrees Kelvin). Unlike the world we
live in, where quarks and gluons are not free, but bound
into nucleons, the QGP can be viewed as a plasma con-
sisting of quarks and gluons that interact via Coulom-
bic forces. (The “color” charge of quarks and gluons
determines the strength of the strong force in the same
way that electric charge determines the strength of the
electromagnetic force.) Laboratory collider experiments
seek to understand the strength of these forces and their
effect on the properties of the QGP.

Prior to experiments in 2000 at Brookhaven National
Laboratory’s RHIC facility, the main question was how

best to study the thermodynamics and kinetics of the
quark-gluon plasma. In particular, knowing the mean
free path of particles in the plasma was important be-
cause it determined whether the QGP behaved as a liq-
uid or a gas. The RHIC experiments essentially an-
swered these questions by observing the explosion (the
“Little Bang”) created in the collision of high-energy
gold ions. The experiments showed that the resulting
plasma could be excellently described by a hydrody-
namic picture of a nearly ideal liquid, in which particles
had a mean free path that was effectively zero.

The detectors at RHIC and the LHC capture the dy-
namics of the explosion by measuring the symmetry of
the subsequent flow of particles: the radial flow (⇥0),
the elliptic flow (⇥2), the triangular flow (⇥3), and so on.
(These are actually the Fourier components of the flow,
projected onto the harmonics ⇤cos(n�)⌅, where � is the
angle that wraps around the line of collision). The com-
ponents depend on the impact parameter (that is, how
“head on” the colliding nuclei are), the particle types,
and their transverse momenta.

At RHIC, measuring how these flow components
vary with different experimental conditions provided
information about matter in a temperature range be-
tween 0.5Tc and 2Tc. The LHC has a higher collision
energy than RHIC and is therefore expected to produce
hotter matter. Showing that this is indeed the case, a
companion paper from ALICE provides the first mea-
surement of the density of charged particles produced
in the collisions [3]. ALICE determined the number of
charged particles, or “multiplicity” of a collision, as a
function of the “pseudorapidity”—a measure of the an-
gle of particle trajectories with respect to the line of col-
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URL: http://link.aps.org/doi/10.1103/Physics.3.105
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1) not in line with 
expectations from pure ideal 
hydro (measured v2 increased 
too much)

2) not in line with simple 
triangular scaling 

3) in line with expectations 
from models incorporating 
viscous corrections (viscous 
hydro, parton cascades, 
hybrid models) 
9

First LHC v2 measurement
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v2 as function of pt

Elliptic flow as function of transverse momentum 
does not change much from RHIC to LHC 
energies, can we understand that?
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v2 as function of pt
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Mass dependence of v2(pt)
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centrality dependence clearly shows the effect of increasing 
radial flow
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viscosity (η/s)QGP =
2

4π =0.16 if MC-KLN initial conditions are used. So far the data yield no evidence for a change
of (η/s)QGP between RHIC and LHC that would reflect the different temperature ranges probed. Overall, the QGP
liquid created in heavy-ion collisions at the LHC appears to be as strongly coupled as at RHIC energies.
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FIGURE 5. (Color online) Same preliminary data from ALICE [20, 21] as in Fig. 4, but now compared with VISHNU
calculations with (η/s)QGP =0.2, using the same MC-KLN initial conditions as in Fig. 3. Shown is the eccentricity-scaled elliptic
flow, i.e. v2{2}/εx{2} for the experimental data and 〈v2〉/〈εx〉 for the theoretical curves.
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Hybrid calculations (VISHNU) fix the more central collisions
Is there a strong contribution from the hadronic phase?

Mass dependence of v2(pt)
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Mass dependence of v2(pt)
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The phi meson is also not described by pure viscous hydro 
The multi-strange baryons are closer to viscous hydro
Is this in line with expectations from an hadronic contribution?
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The phi meson follows at low-pt the 
mass scaling while at intermediate pt 
follows the pions as would be 
expected in a reco picture
No KET scaling observed
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Viscous hydro and many (most?) models do not show a 
universal scaling versus KET 
In a simple blast-wave model how well the scaling works 
depends on the magnitude of the transverse flow  
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At low pt the mass ordering of the breaking of the KET 
scaling in the data is in agreement with that in viscous hydro
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x, b

y
z

S. Voloshin and Y. Zhang (1996)

harmonics vn quantify anisotropic flow

Azimuthal distributions of particles measured 
with respect to the reaction plane (spanned 
by impact parameter vector and beam axis) 
are not isotropic.



vn is not an observable
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• since the common symmetry planes cannot be measured 
event-by-event, we measure quantities which do not depend 
on it’s orientation: multi-particle azimuthal correlations

• assuming that only correlations with the symmetry plane are 
present - not a very good assumption (jets, resonances, etc)!

hhein(�1��2)ii = hhein(�1� n�(�2� n))ii
= hhein(�1� n)ihe�in(�2� n)ii
= hv2ni

hvni = hhein(�1� n)ii
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• If v2 fluctuates

• If  

• -> fluctuations in the initial 
conditions change our various 
observables related to v2 

M. Miller and RS, arXiv:nucl-ex/0312008
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eccentricity fluctuations and its possible effect on 
v2 measurements:
M. Miller and RS, arXiv:nucl-ex/0312008 (2003)
participant eccentricity
PHOBOS QM2005: Nucl. Phys. A774: 523 (2006)
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p
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when (2-particle) nonflow is corrected for or negligible!

in limit of “small” (not necessarily 
Gaussian) fluctuations

in limit of only (Gaussian) 
fluctuations 

vn{4} = 0

vn{2} =
2�
�
v̄n

v2n{2} = v̄2n + �2
v

v2n{4} = v̄2n � �2
v

v2n{2}+ v2n{4} = 2v̄2n

v2n{2}� v2n{4} = 2�2
v

x
x’

y’
ΨPP

ΨRP

y
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v2 versus centrality in ALICE

centrality percentile
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Clear separation between v2{2} and higher order cumulants
Higher order cumulant v2 estimates are consistent within 

uncertainties 
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For more central collisions the data is between 
MC Glauber and MC-KLN CGC
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centrality percentile
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Modeling the initial state of HIC
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s0.3 Npart

• In the CGC, multiplicities rise proportional to the (local) saturation scale

• Color electric-magnetig fields after the collision are purely longitudinal: Flux Tube picture

François Gelis

CGC

Why small-x gluons matter

Color Glass Condensate

Factorization

Stages of AA collisions

Leading Order

Leading Logs

Glasma fields

Initial color fields

Link to the Lund model

Rapidity correlations

Matching to hydro

Glasma stress tensor

Glasma instabilities

Summary
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Glasma flux tubes

• The initial chromo-!E and !B fields form longitudinal

“flux tubes” extending between the projectiles:

• Correlation length in the transverse plane: ∆r⊥ ∼ Q
−1
s

• Correlation length in rapidity: ∆η ∼ α−1
s

• The flux tubes fill up the entire volume

Correlation length in the transverse plane: 

Correlation length in rapidity 

�r� � 1/Qs(x)

�⇥ � 1/�s

Flux tubes

François Gelis

CGC

Why small-x gluons matter

Color Glass Condensate

Factorization

Stages of AA collisions

Leading Order

Leading Logs

Glasma fields

Initial color fields

Link to the Lund model

Rapidity correlations

Matching to hydro

Glasma stress tensor

Glasma instabilities

Summary
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Initial classical fields, Glasma

Lappi, McLerran (2006)

• Immediately after the collision, the chromo-!E and !B fields

are purely longitudinal and boost invariant :
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• Glasma = intermediate stage between the CGC and the

quark-gluon plasma

Introduction

Bookkeeping

Classical fields

!Diagrammatic expansion

!Retarded propagators

!Classical fields

!Gluon spectrum at LO

!Glasma

!Generating functional

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 31

Initial Glasma fields

Lappi, McLerran (2006) (Semantics : Glasma ≡ Glas[s - plas]ma)

" Before the collision, the chromo-!E and !B fields are localized
in two sheets transverse to the beam axis

" Immediately after the collision, the chromo-!E and !B fields
have become longitudinal :

Ez = ig
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Javier Albacete

The v2 fluctuations are very 
similar as function of η and pt
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ALICE: arXiv:1205.5761
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Initial conditions and vn
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G. Qin, H. Petersen, S. Bass, and B. Muller

initial spatial geometry not a smooth almond (for which all 
odd harmonics are zero due to reflection symmetry)

may give rise to higher odd harmonics versus their planes of 
symmetry 
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Shear Viscosity
τ=0.4 fm/c
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initial conditions ideal hydro η/s=0 viscous hydro η/s=0.16
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Larger η/s clearly smoothes the 
distributions and suppresses 
the higher harmonics (e.g. v3)
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the vn’s

ALICE Collaboration, arXiv:1105.3865 
PRL 107 (2011) 032301

The v3 with respect to the 
reaction plane determined in 
the ZDC and with the v2 
participant plane is consistent 
with zero as expected if v3 is 
due to fluctuations of the initial 
eccentricity

The v3{2} is about two times 
larger than v3{4} which is also 
consistent with expectations 
based on initial eccentricity 
fluctuations centrality percentile
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Alver, Gombeaud, Luzum & Ollitrault, Phys. Rev. C82 034813 (2010)
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We observe significant v3 and v4 which compared to v2 has a different 
centrality dependence (strong constrain for η/s)
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centrality percentile
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We observe as for v2 that v3{4} and v3{6} agree within errors and the 
difference of about a factor 2 between v3{2} and v3{4} and v3{6} 
matches that observed in Glauber calculations (indication of the 
number of sources?)

We can now even measure the pt dependence of v3 using higher 
order cumulants
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Correlations between vn
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hcos(3�1 + 3�2 � 2�3 � 2�4 � 2�5)i = v23v
3
2 cos[6( 3 � 2)]

hcos(2�1 + 2�2 � 2�3 � �4 � �5)i � 2hcos(2�1 � �2 � �3)ihcos(2�1 � 2�2)i = �v32v
2
1 cos[2( 2 � 1)]

hcos(3�1 + 2�2 � 2�3 � 2�4 � �5)i � 2hcos(3�1 � 2�2 � �3)ihcos(2�1 � 2�2)i = �v3v
3
2v1 cos[3 3 � 2 2 � 1)]

The 5 particle cumulants allow us to cleanly measure if there is a 
correlations between the various planes 



Conclusions
• Elliptic flow measurements provided strong constraints on the bulk properties of hot 

and dense matter produced at RHIC and LHC energies and have led to the new 
paradigm of the QGP as the so called perfect liquid 

• At the LHC we observe even stronger flow than at RHIC which is expected for 
almost perfect fluid behavior

• viscous hydro calculations fail to describe proton v2 while  hybrid models do a much 
better job

• does this hadronic contribution also explain the v2 of the phi meson and multi-
strange baryons?

• At the LHC KET scaling is broken (but was it ever a well founded scaling?)

• v2 fluctuations are in qualitative agreement with expectations from Glauber models 
and  rather independent of η and pt

• The measurements of v3 and higher vn’s at RHIC and at the LHC indicate that these 
flow coefficients behave as expected from a created system which has a small η/s 

• The fluctuations can be used to do “event shape engineering” which provides new 
ways to compare to models
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Event shape engineering
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Flow Fluctuations

• for σv << <v> this is a general result to order σ2
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