Probing the Extremes of Matter with Heavy Ions Erice-Sicily: 16-24 September 2012

Hadronization:

Does the Statistical Model Freeze-Out Curve meet the Lattice Parton-Hadron Phase Boundary?

together with F. Becattini, M. Bleicher, T. Kollegger, T. Schuster, J. Steinheimer

Reinhard Stock, Goethe University and FIAS, Frankfurt

FIAS Frankfurt Institute for Advanced Studies

Sketch of the QCD Phase Diagram

Lattice QCD extrapolation to finite μ_B predicts the parton-hadron coexistence line in the (T, μ_B) plane.

• Assumptions:

- Hadronization creates chemical equilibrium freeze-out.

- Hadron abundances freeze out directly at QCD hadronization(?), and survive the hadronic expansion stage(?).

- Under these assumptions: Statistical Model (SM) freeze-out curve locates the QCD phase boundary curve.
- Our aim: Consider the "Empirical freeze-out curve"

• Questions:

- Why does the freeze-out curve appear to fall below the lattice curve at higher μ_B ?

- Does the hadronic expansion phase REALLY preserve the hadronic multiplicity distribution?

UrQMD Study of Hadronic Expansion Effects on Hadron Yields

- Employ the recent hybrid version of UrQMD:
 Hydrodynamic (3+1) phase until energy density
 I GeV/fm3, plus hadronic emission à la
 Cooper-Frye.
 - Attach UrQMD hadronic expansion as an "afterburner" stage.
- Compare hadronic yields directly after Cooper-Frye with those after the "afterburner" stage.

SERIOUS ANNIHILATION EFFECTS in baryon and antibaryon sector!

- At SPS: selective annihilation of \overline{p} , $\overline{\Lambda}$ and $\overline{\Xi}$. The rest essentially unaffected.
- At RHIC and LHC: annihilation tends to be symmetric for baryons and antibaryons; $\Lambda/\overline{\Lambda}$ unaffected, while Ω and $\overline{\Omega}$ are enhanced.

Statistical Model Analysis: UrQMD at SPS Energies

Approach: SM fit to UrQMD "Hydro only" vs. "Hydro plus afterburner"

Hydro plus afterburner

Hydro only

 \rightarrow The empirical freeze-out curve needs revision!

Statistical Model Analysis: UrQMD at SPS Energies

Approach:

- SM fit to UrQMD "Hydro only"
- SM fit to "Hydro plus afterburner"
- SM fit to "Hydro plus afterburner" with restricted hadron set

A modified SM fit recovers the original freeze-out curve, the empirical freeze-out curve will move up in T

Statistical Model Analysis: NA49 Data

SM fit to NA49 data in full acceptance central Pb+Pb 17.3 GeV OMITTING \overline{p} , $\overline{\Lambda}$ and $\overline{\Xi}$ from the fit

STRIKING SIMILARITY to UrQMD survival plot

Data shows similar selective antibaryon deficits as predicted by UrQMD

6

Statistical Model Analysis: UrQMD at LHC Energy

Similar UrQMD plus statistical model analysis applied to central Pb+Pb collisions at $\sqrt{s} = 2.7 \text{ TeV}$

The obtained (T,μ_B) with a fit to a suitably restricted hadron sample is close to the hadronization point

Conclusions I

- The hadronic expansion phase does IN FACT distort the hadrochemical equilibrium created at hadronization.
- Indeed, in statistical model fits to UrQMD, the final state (afterburning) effects cause a general downward shift in the (T,μ_B) positions of the chemical freeze-out points, by about 10-15 MeV in the SPS energy range. At the LHC, the predicted shift in temperature is of the order of 6-8 MeV with sizable discrepancies of p, \overline{p} , $\overline{\Xi}$, Ω and $\overline{\Omega}$.
- The resulting chemical freeze-out curve thus needs revision.
- A refined data analysis with the SM will result in a modified freeze-out curve that will more closely follow recent lattice calculations

• Look at data

For details on the method, see:

- F. Becattini et al., PRC 85 (2012) 044921
- J. Steinheimer et al., arXiv:1203.5302

Statistical Model Analysis: NA49 Data

Approach: usual SM fit vs. fit omitting \overline{p} , $\overline{\Lambda}$ and $\overline{\Xi}$

Statistical Model Analysis: ALICE Data

Data: ALICE collaboration, preliminary Quark Matter 2012

Statistical Model Analysis: NA49 Data

Apply correction factors

Conclusions 2

- The corrected curve intends to reconstruct the hadronization points
- It coincides with the lattice parton-hadron transition line up to $\mu_B = 400 \text{ MeV}$
- Hadronization occurs from a Quark-Gluon Plasma
- The "onset of deconfinement" must be at \sqrt{s} below 8 GeV

Back up

Investigation of the lattice coexistence line

Asakawa and Nonaka: Focusing by critical point

without CEP (EOS in usual hydro calculation

Excluded Volume Approximation + Bag Model EOS

Focusing of Isentropic Trajectories

used in most hydro calculations

A. Andronic, P. Braun-Munzinger, J. Stachel 0812.1186 [nucl-th]