

Rare probes of matter at highest densities

Tetyana Galatyuk Technische Universität Darmstadt / GSI

for the HADES and CBM Collaborations

Searching for landmarks of the phase diagram of matter

SHM J. Cleymans, K. Redlich, PRC 60 054908 Z. Fodor et al., hep-lat/0402006, F. Karsch Lattice B.J. Schäfer and J. Wambach <gqbar> :

- Chemical "freeze-out" points from measured particle yields analyzed with Statistical Hadronization Model
 - Universal conditions for freeze-out (?)
 - Why is it working at low beam energies?
- Crossover transition at small μ_B
- Possible 1st order phase transition and critical point at large $\mu_{\rm B}$
- Phase structure at large μ_B \rightarrow Quarkyonic Matter?

Confined gas of perturbative quarks (from N_c limit)

QCD inspired effective models predict the melting of the condensate

Hot and dense matter

Time-evolution of the hot and dense QCD medium in T - μ space from model calculation

an incident beam energy of 25 GeV/u seems to provide the best opportunity for creating and probing QCD matter in the vicinity of the CEP.

H. Petersen et al. , arXiv:1202.0076v1 [nucl-th]

Searching for landmarks of the phase diagram of matter with dileptons

 $\pi, \eta, K, \phi, \Lambda, \Xi, \Omega, \dots$

Bulk observables:

- Equation-of-state
- Collective expansion
- e-by-e physics
- Hadron-chemistry

de

dense matter τ < 10 fm

freeze-out

Searching for landmarks of the phase diagram of matter with dileptons

Dileptons and the phase diagram of matter "I wonder if it finally will turn into a bluff..."

Use ρ as a probe for the restoration of χ symmetry

Robert D. Pisarski, PLB 110 (1982),

. . .

Dileptons and the phase diagram of matter

Use ρ as a probe for the restoration of χ symmetry

Robert D. Pisarski, PLB 110 (1982),

Dileptons from exotic phases...

wonder if it finally will turn into a bluff..."

S. Lottini and G. Torrieri, **PRL 107**, 152301 (2011) S. Lottini and G. Torrieri, arXiv:1204.3272v1 [nucl-th]

. . .

. . .

Dileptons and the phase diagram of matter

Use ρ as a probe for the restoration of χ symmetry

Robert D. Pisarski, PLB 110 (1982),

Dileptons from exotic phases...

wonder if it finally will turn into a bluff..."

S. Lottini and G. Torrieri, **PRL 107**, 152301 (2011) S. Lottini and G. Torrieri, arXiv:1204.3272v1 [nucl-th]

. . .

→ Experimental test

. . .

The experimental challenge...

- Lepton pairs are rare probes (branching ratio O(10⁻⁴))
- at SIS energies sub-threshold vector meson production

The experimental challenge...

- 10
- Lepton pairs are rare probes (branching ratio O(10⁻⁴))
- at SIS energies sub-threshold vector meson production
- Large combinatorial background from: In e⁺e⁻: Dalitz decays (π⁰) and conversion pairs In μ⁺μ⁻: weak π, K decays

The experimental challenge...

- 11
- Lepton pairs are rare probes (branching ratio O(10⁻⁴))
- at SIS energies sub-threshold vector meson production
- Large combinatorial background from: In e⁺e⁻: Dalitz decays (π⁰) and conversion pairs In μ⁺μ⁻: weak π, K decays
- Isolate the contribution to the spectrum from the dense stage
 (<u>X Factor</u> = excess yield above hadronic cocktail in 0.2<M_{II}<0.6 GeV/c²)

Virtual photon radiation from hot and/or dense QCD matter

Model: Ralf Rapp STAR: QM2012, CERES: Phys. Lett. B 666 (2006) 425, NA60: EPJC 59 (2009) 607, HADES: HADES: Phys.Rev.C84 (2011) 014902

- Isolation of excess by a comparison with a measured decay cocktail
- Contributions from the dense phase are quite featureless
 - → strong broadening of in-medium states.

Dileptons: from SIS to SPS...

$^{\mathrm{e}^{-10^{-7}}}_{\mathrm{e}^{-10^{-8}}} \times \mathrm{dN/dM}^{\mathrm{e}^{-10^{-8}}}_{\mathrm{e}^{-10^{-8}}}$ p+p 3.5 GeV ω comp. subtracted HADES 10⁻⁹ $\rho + \Delta + N^*$ + p via N*(1520) 0.2 0.3 0.5 0.6 0.7 0.8 0.4 M^{e⁺e⁻} [GeV/c²]

Data: in preparation, A. Dybczak Model: M. Zetenyi and Gy. Wolf Phys. Rev. C 67, 044002 (2003).

- Relative contribution is fixed through exclusive pion production
- ω contribution subtracted, η contribution suppressed by kinematics
- Dalitz decays of baryonic resonances dominant source at low beam energies.

Exclusive analysis: $pp \rightarrow ppe^+e^-$

Quest: explore the regime of maximal baryon density

Di-muons at 30 GeV/u and below? \rightarrow Tough...

- Challenge:
 - μ at low energies!
 - High probability for weak decays of π and K before the absorber
 - Substantial multiple scattering in the hadron absorber dominates the resolution for low momentum muons
 - → Matching issue!
 - → Phase space limitation

? Less absorber \rightarrow more hadrons punched through

(15)

2016: HADES goes underground

SIS100:

- HADES and CBM:
 - Emissivity of hot/dense nuclear matter
 - In-medium spectral functions of ρ in dense
 (baryon dominated) hadronic matter
 - Multi-strange particle excitation functions
 - Charm production in proton induced reactions
 - Bulk observables

SIS300:

- CBM:
 - Full exploitation of rare probes a highest μ_B; fluctuations, flow

HADES at SIS100: phase space coverage for e⁺e⁻

The "sweet spot" is at mid-rapidity and low pt!

E_{beam} = 1 GeV/u

- overall acceptance for dielectron pairs Acc ≈ 35%
- with nice mid-rapidity coverage

E_{beam} = 8 GeV/u

- Acc ≈ 20%
- (natural) shift towards backward rapidity

E_{beam} = 11 GeV/u

- ... still High Acceptance DiElectron Spectrometer
 → Acc ≈ 20%
- **=** but...

HADES at SIS100: problems, challenges, opportunities

- Challenge: tracking issue →
 - wires introduce long range correlations between particle tracks
- Au+Au 1.23 GeV/u successfully measured in May 2012
- Ni+Ni 8 GeV/u ≈ Au+Au at 1.23 GeV/u
- Au+Au 8 GeV/u occupancy increases by factor of 4-5!

\rightarrow CBM kicks in

y – *radial* coordinate in drift chamber

Di-electron reconstruction in CBM

Challenge:

- No electron identification before tracking
- Background due to material budget of the STS
- Sufficient π discrimination (600 π^{+/-}/event, misidentification 10⁻⁴)

• Strategy:

- Reduction of background by reconstructing pairs from γ-conversion (~3 γ) and π⁰ Dalitz decay (8 π⁰/event)
- Excellent double-hit resolution in MAPS (<100µm) provides substantial close pair rejection capability

Electron identification

- Momentum distribution of conversion pairs are very soft
- High reconstruction efficiency is required for rejection of conversion pairs

π suppression factor of 10⁴ (for p < 1 GeV/c) is in reach with RICH and ToF

Detector R&D

21

RICH

- Conventional design based on commercial products (Germany, Russia, Korea)
 - Float glass mirror (carbon as backup)
 - Multi-anode PMT photo detector

- Test Beam at CERN T9, October 2011
- Mixed electron / pion beam of 2 10 GeV/c

TRD

 Thin gap design based on ALICE TRD (Germany, Russia, Romania)

Low mass electron pairs reconstruction

(22) Au+Au 25 GeV/u, b = 0 fm!

Expected signal-to-background ratio for CBM (di-electrons) compared to the existing experiments

- **CBM**_{sim}: Au+Au 25 GeV/u, **zero impact parameter** free cocktail only (without medium contribution)

Dilepton emission rates in theory

23

Thermal emission...

 $\frac{d^{3}N}{dMdydp_{t}} = \int_{t=0}^{\infty} \frac{d^{4}\varepsilon}{d\mathbf{p}} \left[T(\mathbf{x}), \mu_{B}(\mathbf{x}), \vec{v}_{coll}(\mathbf{x}), ... \right] d\mathbf{x}$

R. Rapp, J. Wambach and H. Hees : arXiv:0901.3289

Radiation from dense matter

- 24
- Schematic illustration of ρ meson propagation within "shining" approach.
- Resonance can continuously emit dileptons over its whole lifetime.

 Isolate the contribution to the spectrum from the dense stage

Emission density evolution

- First (points) and second (errors) moment of the density profile at a given τ.
- T Boltzmann fit to the particle m_T spectra

Encouraging prospects for studying QCD matter in the region of compressed baryonic matter (finite μ_B)

- Explore unknown territory of the nuclear matter phase diagram with HADES and CBM:
 - Unique possibility of characterizing properties of baryon dominated matter with rare probes
 - Establish a complete excitation function of dilepton production up to energies of 40 GeV/u:
 - baryon dominated to meson dominated fireballs!
 - from "transport" to "thermal expansion" models!
 - from "no QGP" to "QGP"?

HADES at SIS100:

- Running experiment with well understood performance, accept up tp 20kHz trigger rate!
- No change of geometry, slight shift towards backward rapidities
- Medium size systems (i.e. Ni+Ni) at top SIS100 energies doable

CBM at SIS100/300:

- Electron option of CBM give access to low-mass vector mesons (and charmonium)
- Sufficient background rejection based on track topology in tracking system
- Feasibility studies are based on full event reconstruction and electron identification. They are still subject to further optimization!
- Electron measurements rely on established detector technology

Tetyana Galatyuk, TUD/GSI

Thank you!

and all my HADES and CBM colleagues!

Bonus slides

Centrality dependence of spectral shape

- 34% most central collisions (A_{part}=38)
- Δ regeneration

NA60's "p clock"

 Rapid increase of relative yield reflects the number of ρ's regenerated in fireball

Na60 data: EPJC 61 (2009) 711

Overview of existing dilepton experiments (summary)

Experiment	System	√s	dN _{ch} /dη	E	S/B	Sys error (%)
CERES	Pb+Au	8.86	216	5.9	1/6	20
CERES (σ/σ_{tot} = 28%)	Pb+Au	17.2	245	2.31	1/13	24
CERES (σ/σ_{tot} = 7%)	Pb+Au	17.2	350	2.58	1/21	16
NA60(central)	In+In	17.2	193	3	1/11	25
NA60(semi-central)	In+In	17.2	133	2	1/8	25
NA60(semi-peripheral)	In+In	17.2	63	2	1/3	12
NA60(peripheral)	In+In	17.2	17	1.5	2	3
CERES	S+Au	19.5	125	5	1/4.3	25
PHENIX(0-10% centrality)	Au+Au	200	650		1/500	?= 50
STAR	Au+Au	200	650	2	1/250	
		SIMUL	ATION			
CBM (real) (b=0fm)	Au+Au	8	?	?	1/41*	-