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What can we say about 
the QCD phase diagram 
from QCD inequalities?
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•QCD critical point at 
finite T and μ

•QCD at finite B and T

What can we say about 
the QCD phase diagram 
from QCD inequalities?
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QCD critical point

QCD critical point 9

unknown. Normally, one would estimate the error by going to increasingly large
volumes V , but, as discussed above, the method becomes prohibitive too quickly
(exponentially) in this limit. Ultimately, the result of Ref. 32) might turn out to
be a good approximation to the exact answer, but we can only tell once we have
an independent result to compare it to. A qualitatively new approach is needed to
overcome the QCD sign problem. ∗)
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Fig. 6. Theoretical (models and lattice) predictions for the location of the critical point. The
labels correspond to Table I. The two dashed lines indicate the magnitude of the slope d2T/dµ2

obtained by lattice Taylor expansion.38) The upper curve agrees with Ref. 39). The lower curve
corresponds to smaller quark mass. Errors/uncertainties are not shown.

In the absence of a controllable (i.e., systematically improvable) method, one
turns to model calculations. Many such calculations have been done.9)–16) Figure 6
and Table I summarize the results. One can see that the predictions vary wildly. An
interesting point to keep in mind is that each of these models is tuned to reproduce
vacuum, T = µB = 0, phenomenology. Nevertheless, extrapolation to nonzero µB is
not constrained significantly by this. In a loose sense, the existing lattice methods
can be also viewed as extrapolations from µB = 0, but finite T .

Two new lattice approaches are being developed. Each of them has the capacity
to determine the location of the critical point. One approach is based on simula-
tions at finite imaginary values of µB

39) and the other on Taylor expansions around
µB = 0.38) The curvature of the phase transition line found using these methods is
indicated by the upper parabola in Fig.6. Recent result38) (lower parabola in Fig.6)
seems to indicate large sensitivity of this curvature to the quark mass. This may or
may not be related to the strong sensitivity of the position of the critical point to
the value of the strange quark mass observed in Ref. 39). Qualitatively, one should

∗) In theories similar, or approximating, the finite density QCD, the sign and/or overlap prob-
lems have been tackled recently, using various new methods see, e.g., Refs. 35)–37).

Stephanov, hep-lat/0701002

QCD phase diagram: an overview M. Stephanov
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Figure 4: Comparison of predictions for the location of the QCD critical point on the phase diagram. Black
points are model predictions: NJLa89, NJLb89 – [12], CO94 – [13, 14], INJL98 – [15], RM98 – [16],
LSM01, NJL01 – [17], HB02 – [18], CJT02 – [19], 3NJL05 – [20], PNJL06 – [21]. Green points are lattice
predictions: LR01, LR04 – [22], LTE03 – [23], LTE04 – [24]. The two dashed lines are parabolas with
slopes corresponding to lattice predictions of the slope dT/dµ2B of the transition line at µB = 0 [23, 25].
The red circles are locations of the freezeout points for heavy ion collisions at corresponding center of mass
energies per nucleon (indicated by labels in GeV) – Section 5.

3.4 Predictions from models

In the absence of a controllable (i.e., systematically improvable and converging in the V → ∞
limit) method to simulate QCD at nonzero µB, one turns to model calculations. Many such calcula-
tions have been done [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Figure 4 summarizes the results. One
can see that the predictions vary wildly. An interesting point to keep in mind is that each of these
models is tuned to reproduce vacuum, T = µB = 0, phenomenology. Nevertheless, extrapolation to
nonzero µB is not constrained significantly by this. In a loose sense, most lattice methods (see next
Section) can be also viewed as extrapolations from µB = 0, albeit with reliable input from finite T .

4. Lattice results on the critical point

This section is devoted to brief (and necessarily incomplete) descriptions of currently devel-
oped lattice methods for reaching out into the TµB plane. The comments below are selective and
are meant to complement the original contributions in this volume. For a more comprehensive
description of these methods, as well as other methods not discussed here, the reader may consult
the most up-to-date review of Schmidt in these proceedings [2] as well as an earlier review by
Philipsen [26], both of which also contain further references to original papers.

4.1 Reweighting

The first lattice prediction for the location of the critical point was reported by Fodor and

9
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Fluctuation of the order parameter

h��(x)��(0)i ⇠ exp(�|x|m�)

At the critical point
m� ! 0
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QCD inequality
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QCD inequality
+ some approximations

Neglecting disconnected diagrams

Neglecting quark loops mixing flavors
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QCD inequality
+ some approximations

Neglecting disconnected diagrams

Neglecting quark loops mixing flavors

Large-Nc QCD satisfies both approximations!
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QCD inequality
+ some approximations

Neglecting disconnected diagrams

Neglecting quark loops mixing flavors

Large-Nc QCD satisfies both approximations!
Several models such as NJL with mean field 
approximation, random matrix also satisfy.
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QCD Inequality
Weingarten (’83), Witten (’83), Nussinov (’84), 
Espriu, Gross, Wheater (’84)

For flavor nonsinglet channel
At T=0, μ=0

m� � m⇡
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QCD Inequality
Weingarten (’83), Witten (’83), Nussinov (’84), 
Espriu, Gross, Wheater (’84)

For flavor nonsinglet channel
At T=0, μ=0

Vafa-Witten (’84)
No SSB of isospin and baryon symm.

m� � m⇡
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QCD Inequality
D = �µ(�µ + igAµ)
D† = �D

�5D�5 = �D

Dirac operator

Anti-Hermite

Chiral symmetry 

Weingarten (’83), Witten (’83), Nussinov (’84), 
Espriu, Gross, Wheater (’84)
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QCD Inequality
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D = D + m

detD � 0
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QCD Inequality
D = �µ(�µ + igAµ)
D† = �D

�5D�5 = �D

Dirac operator

Anti-Hermite

Chiral symmetry 

D = D + m

detD � 0

D(µI) = D +
µI

2
�0�3 + m�1�5D�5�1 = D†

For isospin chemical potential

Alford, Kapustin and Wilczek (’99)

Weingarten (’83), Witten (’83), Nussinov (’84), 
Espriu, Gross, Wheater (’84)
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QCD Inequality

= ��tr[SA(x, y)�SA(y, x)�̄ ]�AhM� (x)M
†
� (y)i ,A

Flavor nonsinglet operator:

hO1O2i 
q

hO1O†
1ihO2O†

2i
Cauchy–Schwarz inequality

M� (x) =  ̄� 

Weingarten (’83), Witten (’83), Nussinov (’84), 
Espriu, Gross, Wheater (’84)
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QCD Inequality

� �tr[SA(x, y)S†
A(y, x)]�

= �M�(x)M†
�(y)��,A

Flavor nonsinglet operator

�M� (x)M†
� (y)��,A =

= ��tr[SA(x, y)�SA(y, x)�̄ ]�A
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QCD Inequality

� �tr[SA(x, y)S†
A(y, x)]�

= �M�(x)M†
�(y)��,A

�M� (x)M†
� (y)��,A � exp(�m� |x� y|)

m� � m�

Flavor nonsinglet operator

�M� (x)M†
� (y)��,A =

= ��tr[SA(x, y)�SA(y, x)�̄ ]�A
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�M� (x)M†
� (y)��,A = ��tr[SA(x, y)�SA(y, x)�̄ ]�A

+�tr[SA(x, x)� ]tr[SA(y, x)�̄ ]�A

Flavor singlet operator

+

13



�M� (x)M†
� (y)��,A = ��tr[SA(x, y)�SA(y, x)�̄ ]�A

+�tr[SA(x, x)� ]tr[SA(y, x)�̄ ]�A

Flavor singlet operator

+

If disconnected diagram is neglected, m� � m�

No second order phase transition as long as m� �= 0
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�M� (x)M†
� (y)��,A = ��tr[SA(x, y)�SA(y, x)�̄ ]�A

+�tr[SA(x, x)� ]tr[SA(y, x)�̄ ]�A

Flavor singlet operator

+

If disconnected diagram is neglected, m� � m�

No second order phase transition as long as m� �= 0

QCD inequality also works at finite T and μI.
Son and Stephanov (’01)
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QCD phase diagram at μI
No critical point out side 

of the pion condensed phase
T

Quark gluon plasma

Pion condensed 
phase

m⇡/2

h⇡ai 6= 0

h⇡ai = 0

YH, Yamamoto(’11)

µI/2
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QCD phase diagram at μ
QCD inequality does not work at μ...
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QCD phase diagram at μ
QCD inequality does not work at μ...

If some quark loops 
mixing flavors are negligible,

i.e., complex phase is negligible,

OK, at large-Nc, outside of pion condensed phase 

P = p(µ2

u, µ
2

d) + p
mix

(µuµd, µ
2

u, µ
2

d)
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QCD phase diagram at μ
QCD inequality does not work at μ...

If some quark loops 
mixing flavors are negligible,

i.e., complex phase is negligible,

OK, at large-Nc, outside of pion condensed phase 

P = p(µ2

u, µ
2

d) + p
mix

(µuµd, µ
2

u, µ
2

d)

The phase structure
at finite μ at finite μI

The phase structure⇡
At large Nc,  Hanada and Yamamoto (’11)
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Model resultsModel results
¾ Location of critical point & average phase factor 䇴e2iș䇵 in 2-flavor models

onset of pion condensation phase

Random matrix model: Han-Stephanov (‘08)

¾ Similar result in PNJL model: Sakai-Sasaki-Kouno-Yahiro (‘10)

NJL model: Andersen-Kyllingstad-Splittorff (‘09)

䇴e2iș䇵

Model results
¾ Location of critical point & average phase factor 䇴e2iș䇵 in 2-flavor models

onset of pion condensation phase

Random matrix model: Han-Stephanov (‘08)

¾ Similar result in PNJL model: Sakai-Sasaki-Kouno-Yahiro (‘10)

NJL model: Andersen-Kyllingstad-Splittorff (‘09)

䇴e2iș䇵

Random matrix model NJL model

Similar result in PNJL model

Han, Stephanov (08) Andersen, Kyllingstad, Splittorff (’09)

Sakai, Sasaki, Kouno, Yahiro (’10)
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Summary I
No critical point out side of 
the pion condensed phase.

Quark Gluon Plasma

Hadronic Phase

0

Tc

T

µ
Color Super Conductor

Allowed region
Critical point

( if quark loops and disconnected diagram are suppressed.)

Lattice QCD can determine the 
boundary.

m⇡/2

We need to estimate 
contributions of disconnected 
diagrams.

Large Nc QCD, OK.

cf. Kogut, Sinclair (’04), (’06), (’07),
     de Forcrand, Kratochvila (’06)
     de Forcrand, Stephanov, Wenger (’07)
     Detmold, Orginos, Shi (’12)

Lattice simulation in the pion 
condensed phase is a 
challenging problem.
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Strong Magnetic field
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Strong Magnetic field

Heavy ion collisions: 
RHIC:
LHC:

Magnetar:

The early universe:

⇠ m2
⇡

⇠ 10m2
⇡

⇠ m2
W ⇠ 105m2

⇡

⇠ 0.01m2
⇡

19



Interesting phenomena 
at finite B

Chiral magnetic effect:

Magnetic catalysis:

Synchrotron radiation, vacuum birefringence, .... 

Chiral symmetry is always 
spontaneously broken at T=0

Hattori, Itakura (’12)Tuchin (’10) (’12)

Suganuma, Tatsumi(’91), Klimenko(’92) Gusynin, Miransky, Shovkovy(’94),Shushpanov, Smilga(’97), ...

Kharzeev, McLerran, Warringa ('07), Kharzeev, Fukushima, Warringa (’08),...

Jz =
eBL3

2⇡
µ5
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Continuum

Discrete

B
Landau quantization

Landau quantization Zeeman splitting
E2 = p2z +m2 + (2n+ 1)qB � gszqB
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Vector meson
m2

⇢(B) ⇡ m2
⇢ � eB
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Vector meson
m2

⇢(B) ⇡ m2
⇢ � eB

m2
⇢(B = Bc) = 0

Vector meson condensation?
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Vector meson
m2

⇢(B) ⇡ m2
⇢ � eB

m2
⇢(B = Bc) = 0

Vector meson condensation?

Model analysis:
AdS/CFT models

Callebaut, Dudal, Verschelde, 1105.2217

19

In the seminal paper [17], the effect of including the nontrivial eB-induced dynamics on the value of the naive critical
eBc = m2

r

was estimated roughly to be about 15%, so that eBc = m2
r

appeared to be an educated guess to set the scale
at which new QCD effects would appear. Our result supports this, since including the chiral magnetic catalysis ’only’
leads to a ⇠ 10% correction on the critical magnetic field. In [22], a quenched Nf = 2 lattice simulation was made
of the r condensate, also revealing an estimate for the critical magnetic field, eBc ⇡ 0.924 GeV2, which is somewhat
larger than our result (109). It is reassuring that two quite distinct non-perturbative approaches, be it our holographic
analysis or the lattice output, are in qualitative agreement.

0.0 0.2 0.4 0.6 0.8 1.0
eBHGeV2L

0.55

0.60

0.65

0.70

0.75

0.80
m2HGeV2L

mr±
2

M 2

M 2

FIG. 6: The eB-dependence of M2, M2 and m2
r± = 1

2 (M2 + M2
).

0.2 0.4 0.6 0.8 1.0
eB HGeV2L

-0.4

-0.2

0.2

0.4

0.6
meff2 HGeV2L

mr2 - eB

mr±
2 HeBL - eB

FIG. 7: The effective mass squared m2
e f f (eB) = m2

r± (eB)� eB of the field combinations r and r

+ in eq. (104) as a function of eB,
the blue (red) curve corresponding to the case where m2

r± is eB-(in)dependent, (not) taking the chiral magnetic catalysis effect into
account. m2

e f f (eB) goes through zero at eBc, eq. (109).

What happens in the original Sakai-Sugimoto model?

In the original Sakai-Sugimoto model, with u0 ⌘ uK = 1/MK and L taking its maximum possible value (48), the
embedding of the flavour branes is unaffected by the presence of the magnetic field. From this we can conclude
that the original Sakai-Sugimoto model is unable to capture the magnetically induced explicit breaking of chiral
symmetry, as well as the chiral magnetic catalysis. It does describe the Landau levels through the mass equation of
the r mesons living on the flavour branes, consistent with the prediction of a r meson condensation at eBc = m2

r

. The
constituent quarks are always massless in this setting, which is evident from the identification (78) for u0 = uK.

Extended NJL model
Chernodub,1101.0117

4

where ✓
0

is a constant phase, C
0

⇡ 1.2, C
�

⇡ 0.51 and
the quark mass m

q

is given in Eq. (14). At B < BNJL

c

the
condensate (22) is zero. The phase transition at B = B

c

is of the second order with the critical exponent 1/2.
Thus, the magnetic field induces the quark condensate

hū�
1

di = �ihū�
2

di = ⇢
0

(B)K
⇣x

1

+ ix
2

L
B

⌘
⌘ ⇢(x?), (23)

where ⇢
0

(B) = �
0

(B)/G
V

. Using known (see, e.g., Ref.
[18]) general properties of the function K(z), Eq. (19),
we conclude that the ground state should be given by a
periodic (in general) lattice of a new type of topological
vortices which are parallel to the magnetic field. The
phase of the condensate (23) winds around the center of
each vortex where the absolute value of ⇢(x?) vanishes.

The condensate (23) locks the local U(1)
e.m.

trans-
formations with the global O(2)

rot

rotations of the co-
ordinate space about the magnetic field axis [7, 20]:
U(1)

e.m.

⇥O(2)
rot

! G
lat

, where G
lat

is a discrete sym-
metry group of rotations of the ⇢-vortex lattice.

The new vacuum state is superconducting. One can
show that there is no B-transverse current, J1=J2=0,
so that the electric current flows along the magnetic
field axis only. In a very weak (test) electric field
~E = (0, 0, E

z

) with E
z

⌧ B, the induced electric cur-
rent in the new vacuum state (23) in a linear-response
approximation is (we use the retarded Green functions):

Jµ(x) =
X

f=u,d

q
f

h ̄
f

�µ 
f

i ⌘ �tr[�µQ̂S(x, x)] , (24)

We average the current (24) over the B-transverse
plane and, in the leading order in powers of ⇢, we get:

@Q(xk)

@z
+
@J (xk)

@t
=

2C
q

(2⇡)3
e3
�
B �BNJL

c

�
E

z

, (25)

where Q is the plane-averaged electric charge density J0,
J is the plane-averaged current Jz, and C

q

⇡ 1 [21]. At
B < B

c

the right hand side of Eq. (25) is zero. Apart
from prefactors, the transport laws in the NJL model (25)
and in the ⇢-meson electrodynamics [7] are identical.

The linear-response law (25) can be rewritten in a
Lorentz-covariant form, @[µ,J⌫] = � · (F, eF ) eFµ⌫ , via the
invariants (F, eF ) = 4( ~B, ~E) and (F, F ) = 2( ~B2 � ~E2).
Here eF

µ⌫

= ✏
µ⌫↵�

F↵�/2 and � is a function of (F, F ) [20].
Equation (25) is a London equation for an anisotropic

superconductivity. Thus, we have just shown that the
strong magnetic field induces the new electromagneti-
cally superconducting phase of the vacuum if B > B

c

.
An empty space becomes an anisotropic superconductor.

The superconductivity of the vacuum is a new e↵ect
which is realized at the QCD-QED interface. This mech-
anism should not work in the pure QED since electrically
charged spin-1 bound states are absent there.

On general grounds one can expect that increase in
temperature T (which, in general, should be of a hadronic

scale) should lead to an evaporation of the ⇢ condensate
with a loss of the superconductivity. The suggested low-
T part of the B � T phase diagram is shown in Fig. 1.

             Phase of
  electromagnetic
superconductivity

Superconducting transition

B Bc0

Hadronic phaseT 

FIG. 1. Low-temperature part of the QCD phase diagram.
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Does the vector meson 
condensation occur in QCD

at finite B?
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Does the vector meson 
condensation occur in QCD

at finite B?

The answer is No!
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Important property 

1

/D +m

1

/D† +m
=

1

� /D2 +m2

=
X

�

1

�2 +m2
|�ih�|


X

�

1

m2
|�ih�| = 1

m2
,

bounded by quark mass

/D = �µ(@µ � igAµ + iqAem
µ )
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Vafa-Witten theorem
No isospin symmetry breaking occurs 
in vector like gauge theories.
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Vafa-Witten theorem
No isospin symmetry breaking occurs 
in vector like gauge theories.

Order parameter:
F = �+⌧+f(x)

L ! L+ ✏ ̄� :Add an explicit breaking term

� ⌘
Z

d

4
x ̄(x)F (x)
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Vafa-Witten theorem
No isospin symmetry breaking occurs 
in vector like gauge theories.

 ✏

m2
+O(✏2) ! 0

|h�i| = ✏

����hTr
1

/D +m
�

1

/D +m
F iA

����+O(✏2)

 ✏

*s

Tr
1

/D† +m

1

/D +m
�� †Tr

1

/D† +m

1

/D +m
FF †

+

A

+O(✏2)

Order parameter:
F = �+⌧+f(x)
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Vafa-Witten theorem
No isospin symmetry breaking occurs 
in vector like gauge theories.

Vector meson cannot condense!
YH, A. Yamamoto, 1209.0007
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4

mixing exists even for in the connected diagram. Thus,
the µ = 3 component of a ρ meson is an excited state of a
pion. At least in the weak magnetic field limit, there are
a large number of magnetic-splitting states of the pion
below the energy level of the ρ-meson state. We cannot
calculate such a highly excited state in the lattice QCD
simulation.
For neutral π and ρ mesons, we calculated only the

connected diagram, which is necessary for the QCD in-
equality. While the disconnected diagram is forbidden
in the absence of the magnetic field, it is allowed in the
presence of the magnetic field because the magnetic field
breaks isospin symmetry. We ignored the disconnected
diagram in this simulation. In this sense, our neutral
mesons are not physical ones.

B. Meson masses

We performed the standard mass analysis of ground-
state mesons in lattice QCD. The meson masses were
extracted from the fitting function

GX(t) = AX cosh[mX(t− aNt/2)] (16)

in large t. The lattice volume is N3
s ×Nt = 163×32. The

numerical results are shown in Fig. 2.
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FIG. 2: The meson masses in a magnetic field. The broken
curves are m2

π+(B) = m2
π+(B = 0) + eB and m2

ρ+(B) =

m2
ρ+(B = 0)− eB.

The charged pion mass increases in the magnetic field.
This mass shift can be explained by the naive mass for-
mula m2

π+(B) = m2
π+(B = 0) + eB. As shown in the

figure, this formula well reproduces the present lattice
result in a weak magnetic field. This behavior was also
observed in the full QCD simulation [19]. The lattice
data slightly deviate from this formula in a strong mag-
netic field.
The charged ρ meson mass shows a nontrivial depen-

dence on the magnetic field. When the magnetic field is

weak, the mass is a decreasing function of the magnetic
field. The naive mass formula, m2

ρ+(B) = m2
ρ+(B =

0) − eB, reproduces the lattice data. At eB # 1 GeV2,
the mass has a nonzero minimum. When the magnetic
field is stronger than this value, the mass becomes an
increasing function of the magnetic field. As a conse-
quence, the charged ρ meson is always massive and heav-
ier than the connected neutral pion in the whole range
of the magnetic field. Although the Wilson fermion does
not have the exact positivity, the present lattice result is
consistent with the Vafa-Witten theorem and the QCD
inequality.

The neutral mesons are much more nontrivial. In the
naive mass formula, neutral particles are independent of
a magnetic field. The lattice result suggests, however,
that the neutral meson masses depend on the magnetic
field. This is due to the internal structure of the mesons.
To know how the physical neutral mesons behaves in a
magnetic field, we have to take into account the discon-
nected diagram.

When the magnetic field is extremely strong, i.e.,
eB $ 1 GeV2, the masses of all the mesons monoton-
ically increases. This is interpreted as a sign that the
internal quarks obtain the large magnetic-induced mass.
The underlying mechanism is unknown in the present
analysis.

C. Meson condensations

To exclude the possibility of the charged ρ meson con-
densation in lattice QCD, we performed another analysis.
If a meson condensation exists, the ground state becomes
massless and a long-range correlation appears. The cor-
relation function becomes

G′
X(t) = AX cosh[mX(t− aNt/2)] + CX (17)

in large t. If the constant parameter CX is finite, CX

corresponds to the squared meson condensation 〈X〉2 and
mX corresponds to the mass of the first excited state. A
similar analysis was performed in a previous work [15].
However, such a constant term can be easily generated
by a finite-volume artifact. We must carefully check the
finite-volume artifact.

We calculated the correlation functions GX(t) with
three lattice volumes N3

s × Nt = 163 × 32, 203 × 40
and 243 × 48, and fitted the results with Eq. (17). In
Fig. 3, we show CX as a function of the lattice volume
V = a4N3

sNt. The magnetic field is fixed at a large
value eB # 4.3 GeV2. In a small volume, Cπ0 and Cρ+

seem finite. In the infinite volume limit, however, all CX

approach to zero. In particular, Cρ+ is zero within the
statistical error. From this analysis, we conclude that the
charged ρ meson is not condensed by a magnetic field.

As shown in Fig. 3, Cπ0 is large compared to other
mesons. This is an expected behavior because the con-
nected neutral pion is the lightest particle and the finite-
volume artifact is the largest for the lightest particle. If

Meson masses on the Lattice QCD
YH, A. Yamamoto, 1209.0007
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Summary II

QCD inequality is useful tool to 
constrain effective models.

No vector meson condensation
in QCD at finite B and T.
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Summary II

QCD inequality is useful tool to 
constrain effective models.

Chernodub claims that 
the electromagnetic superconductivity of vacuum in strong magnetic 
field background is consistent with the Vafa-Witten theorem because 
the charged vector meson condensates lock relevant internal global 
symmetries of QCD with the electromagnetic gauge group.

arXiv:1209.3587

No vector meson condensation
in QCD at finite B and T.
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