

International School of Nuclear Physics, Erice, Sicily, Sept. 2012

HYDRODYNAMIC EVENT GENERATOR AT LHC AND RHIC

Tetsufumi Hirano (Sophia Univ.) In collaboration with P. Huovinen, K. Murase and Y. Nara

T.Hirano, P.Huovinen, K.Murase and Y.Nara, arXiv:1204.5814

Introduction

Analysis tool(s) to interpret data

Properties of the QGP e.g. EoS, transport coefficients

*Cosmic Microwave Background → Cosmological constants

Initial Fluctuation and Higher Harmonics

Adapted from talk by J.Jia at QM2011

Initial fluctuation of profile → Higher harmonics

Necessity of event-by-event simulation

Impact of finite v_n (discussed later)

An Integrated Dynamical Model

Initial Conditions

Longitudinally correlated structure (color flux tubes)
*No longitudinal fluctuation (open question)

Deformation in Initial Conditions

Sample of entropy density profile in a plane perpendicular to collision axis

$$\varepsilon_n = \frac{\left| \left\langle r^2 e^{in\phi} \right\rangle \right|}{\left\langle r^2 \right\rangle}$$

Equation of State

High temperature region: Lattice results Low temperature region: Hadron resonance gas (JAM)

"Particlization" and Cascade

 $T_{\rm sw} = 155 {\rm MeV}$ determined from PHENIX PID p_T spectra

v_n{EP} and Event Plane Resolution

$$v_n\{\text{EP}\}(\eta, p_T) = \frac{1}{R} \langle \cos[n(\phi - \Psi_n^{P/N})] \rangle$$

MC-KLN, Pb+Pb@LHC, midrapidity

Assuming ATLAS
Forward CAL region
*100K events

Finite v_n \rightarrow What makes them finite?

Correlation between Participant Plane and Event Plane

 Ψ_n : Event plane angle

 Φ_m : Participant plane angle

Event plane angle corrected by its resolution

$$egin{array}{c} arepsilon_2
ightarrow v_2 \ arepsilon_3
ightarrow v_3 \end{array}
ight] ext{Intuitively} \ ext{understood} \ arepsilon_4
ightarrow v_4 \ arepsilon_5
ightarrow v_5 \end{array}
ight] ext{Only in central} \ ext{collisions}$$

Ultra central collision? Caveats: Deformation of Au and Cu?

Correlation btw. participant plane and event plane

 Ψ_n : Event plane angle

 Φ_m : Participant plane angle

Event plane angle corrected by its resolution

$$\varepsilon_2 \rightarrow v_2$$

$$\varepsilon_4 \rightarrow v_4$$
 (central) $\varepsilon_2 \rightarrow v_4$ (peripheral)

MC-KLN vs. MC-Glauber

Pb+Pb @ LHC, midrapidity

PHENIX*: Simultaneous analysis of v_2 and v_3 Our suggestion: Simultaneous analysis up to v_5

$V_n\{EP\}(\eta)$

Even Harmonics

Odd Harmonics

Not boost inv. $\leftarrow \rightarrow$ almost boost inv. for epsilon (Remember flux tube structure)

Initial Conditions

Longitudinally correlated structure (color flux tubes)
*No longitudinal fluctuation (open question)

PID spectra, $v_2(p_T)$ and $v_3(p_T)$

MC-KLN, Pb+Pb @ LHC, midrapidity

Almost identical pattern between v₂ and v₃

*100K events

Impact of Finite Higher Harmonics

Only few people (?)
 believed hydro description
 of the QGP (~ 1995)

coarse graining size

initial profile

 Hydro at work to describe elliptic flow (~ 2001) $d \lesssim 5 \text{ fm}$

 Hydro at work (?) to describe higher harmonics (~ 2010)

Outlook: Towards a more realistic event generator

- Dissipative effects
- Fluctuation appears everywhere
 - Multiplicity fluctuation (Negative Binomial Dist.)
 - Longitudinal fluctuation (Particle production in strong color fields)
 - Thermal fluctuation (a.k.a. hydrodynamic fluctuation)
 - Disturbed by jets (wake)

Hydrodynamic Fluctuation and Dissipation

Stochastic constitutive equation

$$\pi^{\mu\nu} = \int_{x^0 > x'^0} d^4 x' G_{\pi}(x - x')^{\mu\nu}{}_{\alpha\beta} \, \partial^{<\mu} u^{\nu>}(x') + \delta \pi^{\alpha\beta}$$

Fluctuation-Dissipation relation

$$\langle \delta \pi^{\mu\nu}(x) \delta \pi_{\alpha\beta}(x') \rangle = T G_{\pi}(x - x')^{\mu\nu}_{\alpha\beta}$$

2nd order hydro including relaxation time

←→Colored noise

K.Murase and TH, in preparation

Vortex Ring

An energetic jet traveling through a uniform medium

Vortex ring

Y. Tachibana and TH, in preparation

Summary

- Development of event generator based on relativistic hydrodynamics and its application
 - MC-Glauber/KLN initialization
 - Full 3D ideal hydrodynamic simulation with lattice EoS
 - Hadronic afterburner

Outlook: Towards a more realistic event generator

- Dissipative effects
- Fluctuation appears everywhere
 - Multiplicity fluctuation (Negative Binomial Dist.)
 - Longitudinal fluctuation (Particle production in strong color fields)
 - Thermal fluctuation (a.k.a. hydrodynamic fluctuation)
 - Disturbed by jets (wake)