Results from RHIC Beam Energy Scan-I

Nu Xu^(1,2)

Outline:

- 1) Introduction
- 2) Selected Results from RHIC BES-I
- 3) Near Future Physics Programs at RHIC

⁽¹⁾ College of Physical Science & Technology, Central China Normal University, China ⁽²⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA

QCD in the Twenty-First Century

Relativistic Heavy Ion Collider

Brookhaven National Laboratory (BNL), Upton, NY

Particle Identification at STAR

Multiple-fold correlations from identified particles!

sPHENIX: A Jet Detector at RHIC

Large acceptance Jets and multiple correlations

→ sQGP properties at RHIC

http://arxiv.org/abs/arXiv:1207.6378

Beam Energy Scan at RHIC

Study QCD Phase Structure

- Signals of phase boundary
- Signals for critical point

Observations:

- (1) Azimuthally HBT 1st order phase transition
- (2) Directed flow v₁ 1st order phase transition
- (3) Dynamical correlations partonic vs. hadronic dof
- (4) v₂ NCQ scaling partonic vs. hadronic dof
- (5) Fluctuations Critical point, correl. length
- http://drupal.star.bnl.gov/STAR/starnotes /public/sn0493
- arXiv:1007.2613

PHENIX: E. O'Brien, QM2012

 E_T/N_{ch} shows a week energy dependence

Bulk Properties at Freeze-out

Chemical Freeze-out: (GCE)

- Central collisions => higher values of
 T_{ch} and *µ_B*!
- The effect is stronger at lower energy.

Kinetic Freeze-out:

- Central collisions => lower value of
 T_{kin} and larger collectivity β
- Stronger collectivity at higher energy

Di-electrons: $\sqrt{s_{NN}}$ Dependence

- 1) LMR enhancement vs. collision energy, mass cut dependence
- 2) Future Heavy Flavor Tracker and Muon Telescope Detector upgrades:
 - correlated charm contributions
 - extract direct radiation information

Di-electrons: Model Comparison

- 1) With in-medium broadened rho, model results are consistent with experimental data ($m_{ee} \le 1 \text{ GeV/c}^2$) at $\sqrt{s_{NN}} = 200, 62.4$ and 19.6GeV
- 2) Open issues: charm contributions in the model calculations
 - transverse spectra
 - consistency between IMR and LMR

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

Partonic Collectivity at RHIC

Low $p_T (\leq 2 \text{ GeV/c})$: hydrodynamic mass ordering High $p_T (> 2 \text{ GeV/c})$: *number of quarks scaling*

Partonic Collectivity, necessary for QGP! De-confinement in Au+Au collisions at RHIC!

12/26

NCQ Scaling in v₂

Collectivity v₂ Measurements

PHENIX NCQ Scaling of $v_2/v_3 \& J/\psi R_{AA}$

 $\sqrt{s_{NN}} \ge 39$ GeV, measured v_i (i=2,3) and J/ ψ R_{AA} show no energy dependence

→ Partonic interaction and sQGP dominant for collisions at √s_{NN} ≥ 39 GeV

Search for Local Parity Violation

in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

Strong external EM field
 De-confinement and Chiral symmetry restoration

- 1) Parity-even observable, assumptions must be tested
- 2) Energy dependence & UU collisions

- S. Voloshin, *PRC62*, 044901(00).

- STAR: *PR103*, 251601; PRC81, 054908(2009)

Dynamical Correlations vs. $\sqrt{s_{NN}}$

- (1) Below $\sqrt{s_{NN}}$ = 11.5 GeV, the splitting between the same- and opposite-sign charge pairs (SS-OS) disappear
- (2) If QGP is the source for the observed splitting at high-energy nuclear collisions → hadronic interactions become dominant at √s_{NN} ≤ 11.5 GeV

$\sqrt{s_{NN}}$ = 193GeV U+U Collisions

Comparing to Au+Au collisions, v₂ values are higher in U+U
 At 1% most central collisions, v₂ is found to be finite & SS-OS=0!

Higher Moments

- High moments for conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length): $\langle (\delta N)^2 \rangle \approx \xi^2, \ \langle (\delta N)^3 \rangle \approx \xi^{4.5}, \ \langle (\delta N)^4 \rangle \approx \xi^7$
- 3) Direct comparison with Lattice results:

$$S * \sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa * \sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

- 4) Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions.
 - A. Bazavov et al. 1208.1220 (NLOTE)
 - STAR Experiment: PRL105, 22303(2010)
 - M. Stephanov: PRL102, 032301(2009)
 - R.V. Gavai and S. Gupta, PLB696, 459(2011)
 - S. Gupta, et al., Science, 332, 1525(2011)
 - F. Karsch et al, PLB695, 136(2011)
 - M.Cheng et al, PRD79, 074505(2009)
 - Y. Hatta, et al, *PRL91*, 102003(2003)

Higher Moment: Net-charge

STAR: D. McDonald, QM2012

- Preliminary net-charge results: efficiency, decay, ... effects under study
- 2) Higher statistics data needed below 20 GeV

- HRG Model: K. Redlich et al, private communications

PH*ENIX Higher Moments for Net Charge

PHENIX: E. O'Brien, QM2012

- 1) Neither K nor S vary with centrality at 7.7, 39, 62.4 and 200 GeV
- 2) Kurtosis vs. energy is flat within errors
- 3) Skewness tracks UrQMD prediction
- 4) Analysis of data sets from $\sqrt{s_{NN}} = 19.6$, 27 GeV still to be completed

Net-proton Higher Moments

STAR: X.F. Luo, QM2012

STAR net-proton results:

- 1) All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for $\kappa\sigma^2$ and S\sigma at all energies. Larger deviation at $\sqrt{s_{NN}} \sim 20$ GeV
- 2) UrQMD model show monotonic behavior
- 3) Higher statistics needed for collisions at $\sqrt{s_{NN}} < 20 \text{ GeV}$

e-cooling at RHIC for BES-II

total luminosity $1/(\mathrm{cm}^{\wedge}2~\mathrm{sec})$

Fermi Lab Pelletron

- Requested to install the e-cooling device
- BES-II data taking in 2016 2017

RHIC Beam Energy Scan-I

√s _№ (GeV)	<i>μ_{Β⁺}</i> (MeV)	Events(10 ⁶)
39	112	130
27	156	70
19.6	206	36
11.5	316	12
7.7	420	5
5	550	
* for central collisions		

Jet Quenching

Changes at $\sqrt{s_{NN}}$ < 20 GeV, calls for higher statistics data!

Exploring the QCD Phase Structure

Summary

1) BES-I Program:

- Partonic QGP dominant: √s_{NN} > 39 GeV
 Hadronic interactions become dominant: √s_{NN} ≤ 11.5 GeV
- High statistics data for energy region √s_{NN} ≤ 20 GeV, needs e-cooling at RHIC => BES-II
- 2) Jets, Heavy Flavor and Di-lepton Programs: PHENXI: sPHENIX, full jets reconstruction, ready by 2018 STAR: HFT+MTD upgrades, ready by summer of 2014

RHIC provides unique opportunities for exploring matter with QCD degrees of freedom in the coming decade!