

Kirchhoff-Institut for Physics

Calorimetric measurement of the ¹⁶³Ho electron capture spectrum

Philipp Chung-On Ranitzsch for the ECHo collaboration

Heidelberg University

- Electron Capture and Direct Neutrino Mass Measurements
- Metallic Magnetic Calorimeter (MMCs)
- Experimental Results
- Conclusions

Electron Capture

A non- zero neutrino mass affects the de-excitation energy spectrum

Atomic de-excitation:
X-ray emission
Auger electrons

•Coster-Kronig transitions

Calorimetric measurement

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{m_{\nu}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}}$$

The Case of ¹⁶³Ho

Metallic Magnetic Calorimeters: Concept

MMCs: Readout

Two-stage SQUID setup with flux locked loop to linearize the first stage SQUID:

- low noise
- large bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)

Metallic Magnetic Calorimeters: Geometry

MMCs: Signal Properties

MMCs: Noise Contributions

Thermodynamic fluctuations • SQUID & readout noise

1/f noise due to Er ions

MMCs: Optimization

- Signal and noise can be predicted with good confidence
- $SNR^2(f) = |\tilde{p}(f)|/S_{\Phi,tot}(f)$
- $\Delta E_{FWHM} \propto \left(\int SNR^2(f)df\right)^{-\frac{1}{2}}$
- ΔE_{FWHM} depends on:
 - Absorber: C_a , τ_0
 - Sensor: $h_{\rm S}$, $A_{\rm S}$, $x_{\rm Er}$, τ_1
 - Pick-up coil: A_c , p, w/p, I_0
 - SQUID: L_i , L_s , $S_{\phi,SQ}$
 - Temperature: T

• Detectors can be optimized for best energy resolution

MMCs: Microfabrication

6 to 20 layer process Sputterdeposition of 10 um Nb (pickup coils & wiring) SiO₂ (insulation) 30 µm Au:Pd (persistent current) switch heater) Au:Er (sensors) **Electrodeposition of Au** (absorbers & thermal links) overhanging positioned on stems up to 200 μm thick

Metallic Magnetic Calorimeters: Performance

Very good energy resolution $\Delta E_{\text{FWHM}} = 1.6 \text{ eV}$ @ 6 keV

Very fast rise-time $\tau_r = 90 \text{ ns}$

¹⁶³Ho Detector Prototype

- Planar meander shaped pick-up coil
- 4 detectors on 5 mm x 5 mm silicon substrate
- Centered 190 μm x 190 μm absorbers for ion implantation at ISOLDE/CERN
- 4π geometry with close to 100 % quantum efficiency

¹⁶³Ho Detector Prototype

- 4 channel read-out(2 channels measured)
- Newest generation C6X114W SQUIDs
 - \rightarrow best noise performance
- Oct. '12 to Dec. '12
- Jun. '13 to Sep. '13

- Cu holder
- CuFlon circuit board
- Pb shielding

¹⁶³Ho Detector: Experimental Environment

- Cu holder
- CuFlon circuit board
- Pb shielding

- ³He/⁴He dilution refrigerator (Oxford instruments)
- Cu experimental platform (Au plated)
- T ≈ 20 mK

¹⁶³Ho Detector: Experimental Environment

Layered precooling:

- Liquid N₂ ~ 77 K
- Liquid ⁴He ~ 4.2 K
- Recycle time ~ 24 h

Dilution unit

- 1st stage ~ 1.5 K
- 2nd stage ~ 0.6 K
- Experimental platform ~ 20 mK

¹⁶³Ho experiment: Detector performance

- Magnetization (→ temperature calibration) agrees with simulation
- Pulse heights (→ heat capacity) as expected
- Decay time: 5.5 ms@30mK → consistent with designed thermal link

¹⁶³Ho experiment: Detector performance

- Rise time: ~130 ns → limited by e⁻-spin interaction
- 1 pixel irradiated with ⁵⁵Fe calibration source

→ Precise energy calibration

Further detector optimization (goal: ~2 eV)

¹⁶³Ho experiment: Total Spectrum

• External calibration with ⁵⁵Fe source on one pixel

– Non-Linearity < 1 % @ 6 keV</p>

¹⁶³Ho experiment: Total Spectrum

- External calibration with ⁵⁵Fe source on one pixel
 - Non-Linearity < 1 % @ 6 keV</p>
- "High statistics" spectrum (~40000 ¹⁶³Ho events)
- Beam contamination: ¹⁴⁴Pm decays

→ Need of high purity ¹⁶³Ho source

¹⁶³Ho experiment: Spectrum analysis

- No external sources
- 2nd "High statistics" spectrum (~20000 ¹⁶³Ho events)
- Improved triggers and cuts

→ First observation of OI line (at ~ 50 eV)

 Modeling athermal phonon loss (low energetic tails) with exponentially modified Gaussian

¹⁶³Ho experiment: Spectrum analysis

MMCs: Readout

Two-stage SQUID setup with flux locked loop to linearize the first stage SQUID:

- low noise
- large bandwidth / slewrate
- small power dissipation on detector SQUID chip (voltage bias)
- Not scalable to large detector numbers (max. ~ 100)

MMCs: Multiplexed Readout^[1]

Advantages:

- Two Coaxes and one HEMT for readout of ~1000 detectors
- Dissipated power inside the cryostat very low
- Large bandwidth per detector

Challenges:

• Complex room temperature readout electronics

[1] J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, and K.W. Lehnert, Appl. Phys. Lett. 92(2) (2008)

64 Pixels Array with integrated rf-SQUID Readout

Conclusions & Outlook

- Metallic magnetic calorimeters
 - Well understood
 - Versatile detectors suitable for ECHO
- First Detector with implanted ¹⁶³Ho shows promising results
 - Ongoing detector R&D
 - ➢ ¹⁶³Ho production
- From single pixel to arrays
 - Microwave multiplexing

Thank you!

