Neutrino-Nucleus Reactions induced by Solar and Supernova Neutrinos

"nuclear structure, v-process nucleosynthesis neutrino properties (mass hierarchy) v-detection, cooling of stars"

> Toshio Suzuki Nihon University, Tokyo ERICE 2013 Sept. 20, 2013

v-nucleus reactions <-> spin-dependent excitations in nuclei

- New shell-model Hamiltonians which describes well spin modes in nuclei -> New v-nucleus reaction cross sections
 1. v-¹²C with SFO (p-shell)
 - Light-element nucleosynthesis in supernova explosions v-oscillation effects and v-mass hierarchy
- 2. v- ${}^{13}C$ and low-energy v detection by ${}^{13}C$

Cross sections induced by solar v

3. v-⁵⁶Fe, v-⁵⁶Ni and e-captures on Ni isotopes with GXPF1J
4. v- ⁴⁰Ar with VMU (monopole-based universal interaction)
* important roles of tensor force

 Detailed e-capture and beta-decay rates for URCA nuclear pairs in 8-10 solar-mass stars (A=23, 25, 27)
 USDB (sd-shell): Cooling of O-Ne-Mg core by URCA

Collaborators

T. Kajino ^{a,b}, B. Balantekin^c, S. Chiba^d, T. Yoshida^b, M. Honma^e, T. Otsuka^f H. Toki^g, K. Nomoto^h, S. Jonesⁱ, R. Hirsciⁱ

^aNational Astronomical Observatory of Japan ^bDepartment of Astronomy, University of Tokyo ^cUniv. of Wisconsin ^dTokyo Institute of Technology ^eUniversity of Aizu ^fCNS and Dept. of Physisc, Univ. of Tokyo ^gRCNP, Osaka University ^hWPI, the Univ. of Tokyo ⁱKeele University

1. Neutrino-induced Reactions on ¹²C and Light-Element Nucleosynthesis in Supernova Explosions

New shell-model Hamiltonian in p-shell

p-shell(p-sd) Cohen-Kurath+Millener-Kurath \rightarrow SFO [p: CK (8-16)2BME, p-sd: MK, sd, p2-(sd)2: Kuo's G-matrix] Monopole terms in p1/2-p3/2, T=0 enhanced: $\Delta V = -1.9$ MeV SFO: Suzuki, Fujimoto, Otsuka, PR C67, 044302 (2003)

⁷Li/¹¹B Dependence on Mass Hierarchy and θ_{13}

• $N(^{7}\text{Li})/N(^{11}\text{B}) \implies$ Good indicator for neutrino oscillation

Possibility for constraining *mass hierarchy* and *lower limit of the mixing angle* θ_{13} .

Neutrino experiments \square Constraining *upper limit of* θ_{13}

Supernova X-Grain Coinstraint

Mathews, Kajino, Aoki And Fujiya, Phys. Rev. D85,105023 (2012).

T2K, MINOS (2011)
Double CHOOZ, Daya Bay, RENO (2012)

$sin^2 2\theta_{13} = 0.1$

First Detection of ⁷Li/¹¹B in SN-grains

W. Fujiya, P. Hoppe, & U. Ott, ApJ 730, L7 (2011).

2. v-induced reactions on ¹³C

¹³C: attractive target for very low energy v

 $E_v \leq 10 \text{MeV} \quad E_v^{\text{th}}(^{12}\text{C}) \approx 13 \text{MeV}$

Natural isotope abundance = 1.07%

Fukugita et al., PR C41 (1990) p-shell: Cohen-Kurath $g_A^{eff}/g_A = 0.69$

Detector for solar v

Suzuki, Balantekin, Kajino, PR C86, 015502 (2012)

Solar v cross sections folded over ⁸B v spectrum

$$(v_{e}, e^{-}) \left[\frac{1}{2}(g.s.) + \frac{3}{2}(3.50 \text{ MeV})\right]$$

CK: $1.07 \times 10^{-42} \text{ cm}^{2}$
SFO: $1.34 \times 10^{-42} \text{ cm}^{2}$
 $(v, v') \quad \frac{3}{2}(3.69 \text{ MeV})$
CK: $1.16 \times 10^{-43} \text{ cm}^{2}$
SFO: $2.23 \times 10^{-43} \text{ cm}^{2}$

3. v- ⁵⁶Fe, v- ⁵⁶Ni and ⁵⁶Ni (e⁻, v) ⁵⁶Co Reactions
New shell-model Hamiltonains in pf-shell
GXPF1: Honma, Otsuka, Mizusaki, Brown, PR C65 (2002); C69 (2004)

- **KB3:** Caurier et al, Rev. Mod. Phys. 77, 427 (2005)
- **O** KB3G A = 47-52 KB + monopole corrections
- **O** GXPF1 A = 47-66
- Spin properties of fp-shell nuclei are well described M1 strength $B(GT_{-})$ for ⁵⁸Ni $g_A^{eff}/g_A^{free}=0.74$ (GXPF1J)

Sasano et al., PRL 107, 202501 (2011)

Type-Ia supernova explosion

→ supernova explosion when white-dwarf mass > Chandrasekhar limit

 \rightarrow ⁵⁶Ni (N=Z)

$$\rightarrow$$
 ⁵⁶Ni (e⁻, v) ⁵⁶Co $Y_e = 0.5 \rightarrow Y_e < 0.5$ (neutron-rich)

→ production of neutron-rich isotopes; more ${}^{58}Ni$ Decrease of e-capture rate on ${}^{56}Ni$ → less production of ${}^{58}Ni$. **Problem of over-p**

e-capture rates in stellar environments: $\rho Y_e = 10^7 \vdash 10^{10} \text{ g/cm}^3$

Suzuki, Honma, Mao, Otsuka, Kajino, PR C83, 044619 (2011)

> e-capture rates: GXPF1J < KB3G $\leftarrow \rightarrow$

 $Y_e (GXPF1J) > Y_e (KB3G)$

Problem of over-production of ⁵⁸Ni may be solved.

PRL 104 (2010) 012501

tensor force: bare≈renormalized

O p-sd shell: VMU for p-sd,

Yuan, Suzuki, Otsuka, Xu, Tsunoda, PR C85, 064324 (2012).

p: SFO

sd: SDPF-M (Utsuno)

p-sd: VMU tensor =
$$\pi + \rho$$
,
2-body LS = $\sigma + \rho + \omega$ (M3Y)
central= renormalized VMU

sd: SDPF-M (Utsuno et al.) fp: GXPF1 (Honma et al.) sd-pf: VMU + 2-bpdy LS $(sd)^{-2} (fp)^2$: 2hw

B(GT) & v-⁴⁰Ar cross sections Solar v cross sections folded over ⁸B v spectrum

(p,n) Bhattacharya et al., PR C80 (2009)

(p,n) Bhattacharya et al., PR C80, 055501 (2009)

E. Kolbe, K. Langanke, G. Mart´ınez-Pinedo, and P. Vogel, J. Phys. G 29, 2569 (2003);
I. Gil-Botella and A. Rubbia, JCAP 10, 9 (2003).

5. Detailed e-capture and beta-decay rates for URCA nuclear pairs in 8-10 solar-mass stars

Nuclear URCA process

$${}^{23}Na + e^{-} \rightarrow {}^{23}Ne + \nu$$

$${}^{23}Ne \rightarrow {}^{23}Na + e^{-} + \overline{\nu} \qquad Q=4.376 \text{ MeV} \qquad ({}^{24}\text{Na} \rightarrow {}^{24}\text{Mg: } Q=5.516 \text{ MeV})$$

$${}^{25}Mg + e^{-} \rightarrow {}^{25}Na + \nu \qquad Q=3.835 \text{ MeV} \qquad ({}^{26}\text{Na} \rightarrow {}^{26}\text{Mg: } Q=9.354 \text{ MeV})$$

$${}^{27}Al + e^{-} \rightarrow {}^{27}Mg + \nu \qquad ({}^{26}\text{Na} \rightarrow {}^{26}\text{Mg: } Q=9.354 \text{ MeV})$$

$${}^{27}Mg \rightarrow {}^{27}Al + e^{-} + \overline{\nu} \qquad Q=2.610 \text{ MeV}$$

Cooling of O-Ne-Mg core of stars

sd-shell: USDB Brown and Richter

e-capture and beta-dccay rates evaluated at

 $8.0 < \log_{10}(\rho Y_e) < 9.2$ in steps of 0.02 $8.0 < \log_{10} T < 9.2$ in steps of 0.05

cf: Oda et al., At. Data and Nucl. Data Tables 56, 231 (1994) $0.0 < \log_{10}(\rho Y_e) < 11.0$ in steps of 1.0 $7.0 < \log_{10} T < 10.477$ $T_9 = 0.01, 0.10, 0.20, 0.40, 0.70, 1.0,$ 1.5, 2.0, 3.0, 5.0, 10.0, 30.0

Figure 6. ²⁵Mg electron capture rate (top panel) and ²⁵Na beta decay rate (bottom panel) at $T = 4 \times 10^8$ K from the compilation of Oda et al. (1994) and the new calculation by Toki et al. (2013).

 $(^{23}\text{Ne}, ^{23}\text{Na})$

PHYSICAL REVIEW C 88, 015806 (2013)

FIG. 2. β -transition rates for the A = 23 URCA nuclear pair (²³Ne, ²³Na) for various temperatures as functions of density $\log_{10} \rho Y_e$. β -decay rates (dashed lines) are those decreasing with density, while electron-capture rates (solid lines) are those increasing with density. The temperature steps are shown in the range of $\log_{10} T = 8$ to 9.2 in steps of 0.2.

 $\Delta \log_{10}(\rho Y_{e}) = 0.06$

 $\Delta \log_{10}(\rho Y_{\rm e}) = 0.2$

FIG. 3. Product of β -transition rates for the A = 23 URCA nuclear pair (²³Ne, ²³Na) for various temperatures as functions of density $\log_{10} \rho Y_e$. In panel (a), the mesh points are taken from $\log_{10} \rho Y_e = 8.0$ to 9.2 in steps of 0.02, while in panel (b), they are from $\log_{10} \rho Y_e = 8.0$ to 9.0 in a single step as in Oda *et al.* [10].

URCA density at $\log_{10} \rho Y_e = 8.92$ for A = 23

Cooling of O-Ne-Mg core by the nuclear URCA processes

Summary

- New v –induced cross sections based on new shell-model Hamiltonians with proper tensor forces (SFO for p-shell, GXPF1 for pf-shell, VMU)
- Good reproduction of experimental data for ¹²C (v, e⁻) ¹²N, ¹²C (v, v') ¹²C and ⁵⁶Fe (v, e⁻) ⁵⁶Co
- Effects of v-oscillations in nucleosynthesis abundance ratio of $^7\text{Li}/^{11}\text{B} \rightarrow v$ mass hierarchy

inverted hierarchy

normal hierarchy

 New v capture cross sections on ¹³C by SFO Enhanced solar v cross sections compared to Cohen-Kurath (p shell)

Detection of low-energy reactor anti-v

- GXPF1J well describes the GT strengths in Ni isotopes : ⁵⁶Ni two-peak structure confirmed by recent exp.
- → 1. Accurate evaluation of e-capture rates at stellar environments
 - 2. Large p-emission cross section for ⁵⁶Ni and production of more ⁵⁵Mn in Pop. III stars
- •VMU for sd-pf-shell:

GT strength consistent with (p, n) reaction

 \rightarrow new cross section for 40 Ar (v,e⁻) 40 K induced by solar v

Suzuki and Honma, PR C87, 014607 (2013)

- Detailed e-capture and beta-decay rates for URCA nuclear pairs in 8-10 solar-mass stars
 - → URCA density for A=25 and 23 with fine mesh of density and temperature
 - \rightarrow Cooling of O-Ne-Mg core by nuclear URCA processes

Toki, Suzuki, Nomoto, Jones and Hirschi, PR C 88, 015806 (2013) Jones et al., Astrophys. J. 772, 150 (2013)

2006, Sept.